attention_lstm_op.cc 18.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/attention_lstm_op.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/framework/shape_runtime_infer.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
T
tensor-tang 已提交
19
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/fc_compute.h"
T
tensor-tang 已提交
21
#include "paddle/fluid/platform/cpu_info.h"
22

T
tensor-tang 已提交
23 24 25
namespace paddle {
namespace operators {

26
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
T
tensor-tang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  auto* runtime_ctx = dynamic_cast<framework::RuntimeInferShapeContext*>(ctx);
  if (runtime_ctx == nullptr) {
    LOG(FATAL) << "Should have runtime infer context";
  }
  const auto& ins = runtime_ctx->OpBase().Inputs();
  const auto& outs = runtime_ctx->OpBase().Outputs();
  const auto& scope = runtime_ctx->InferScope();
  const auto ins_end = ins.end();
  const auto outs_end = outs.end();
  auto fair_input = [&](const std::string& name) -> bool {
    auto it = ins.find(name);
    if (it == ins_end) {
      return false;
    }
    const auto& in = it->second;
    if (in.size() != 1 || in[0] == framework::kEmptyVarName) {
      return false;
    }
    return scope.FindVar(in[0]) != nullptr;
  };
  auto fair_output = [&](const std::string& name) -> bool {
    auto it = outs.find(name);
    if (it == outs_end) {
      return false;
    }
    const auto& out = it->second;
    if (out.size() != 1 || out[0] == framework::kEmptyVarName) {
      return false;
    }
    return scope.FindVar(out[0]) != nullptr;
  };

  PADDLE_ENFORCE(fair_input("X"), "Assert only one Input(X) of AttentionLSTM.");
  PADDLE_ENFORCE(fair_input("C0"),
                 "Assert only one Input(C0) of AttentionLSTM.");
  PADDLE_ENFORCE(fair_input("LSTMWeight"),
                 "Assert only one Input(LSTMWeight) of AttentionLSTM.");
  PADDLE_ENFORCE(fair_input("LSTMBias"),
                 "Assert only one Input(LSTMBias) of AttentionLSTM.");
  PADDLE_ENFORCE(fair_input("AttentionWeight"),
                 "Assert only one Input(AttentionWeight) of AttentionLSTM.");

  PADDLE_ENFORCE(fair_output("Hidden"),
                 "Assert only one Output(Hidden) of AttentionLSTM.");
  PADDLE_ENFORCE(fair_output("Cell"),
                 "Assert only one Output(Cell) of AttentionLSTM.");
  PADDLE_ENFORCE(fair_output("AttentionedX"),
                 "Assert only one Output(AttentionedX) of AttentionLSTM.");
  PADDLE_ENFORCE(fair_output("AttentionFCOut"),
                 "Assert only one Output(AttentionFCOut) of AttentionLSTM.");
  PADDLE_ENFORCE(fair_output("LSTMX"),
                 "Assert only one Output(LSTMX) of AttentionLSTM.");
  PADDLE_ENFORCE(fair_output("LSTMOUT"),
                 "Assert only one Output(LSTMOUT) of AttentionLSTM.");
T
tensor-tang 已提交
81 82

  auto x_dims = ctx->GetInputDim("X");
T
tensor-tang 已提交
83
  const int M = x_dims[1];
T
tensor-tang 已提交
84 85
  PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");

T
tensor-tang 已提交
86 87 88 89
  auto w_dims = ctx->GetInputDim("LSTMWeight");
  const int D = w_dims[1] / 4;
  PADDLE_ENFORCE_EQ(w_dims.size(), 2, "Input(LSTMWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(w_dims[0], D + M,
90
                    "LSTMWeight dims should be (%d + %d) * %d.", D, M, 4 * D);
T
tensor-tang 已提交
91 92 93

  auto b_dims = ctx->GetInputDim("LSTMBias");
  PADDLE_ENFORCE_EQ(b_dims.size(), 2, "Input(LSTMBias)'s rank must be 2.");
T
tensor-tang 已提交
94 95
  PADDLE_ENFORCE_EQ(b_dims[0], 1, "LSTMBias dims should be 1 x %d.", 4 * D);
  PADDLE_ENFORCE_EQ(b_dims[1], 4 * D, "LSTMBias dims should be 1 x %d.", 4 * D);
T
tensor-tang 已提交
96 97 98 99

  auto c_dims = ctx->GetInputDim("C0");
  PADDLE_ENFORCE_EQ(c_dims.size(), 2, "Input(C0)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(c_dims[1], D, "C0 dims should be N x %d.", D);
T
tensor-tang 已提交
100
  if (fair_input("H0")) {
T
tensor-tang 已提交
101 102 103 104 105 106
    auto h_dims = ctx->GetInputDim("H0");
    PADDLE_ENFORCE(h_dims == c_dims,
                   "The dimension of Input(H0) and Input(C0) "
                   "should be the same.");
  }

T
tensor-tang 已提交
107 108 109 110 111 112 113
  auto atten_w_dims = ctx->GetInputDim("AttentionWeight");
  PADDLE_ENFORCE_EQ(atten_w_dims.size(), 2,
                    "Input(AttentionWeight)'s rank must be 2.");
  PADDLE_ENFORCE_EQ(atten_w_dims[0], M + D,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
  PADDLE_ENFORCE_EQ(atten_w_dims[1], 1,
                    "AttentionWeight shapes must be (%d + %d) * 1.", M, D);
T
tensor-tang 已提交
114
  if (fair_input("AttentionBias")) {
T
tensor-tang 已提交
115 116 117 118 119 120 121 122 123
    auto atten_b_dims = ctx->GetInputDim("AttentionBias");
    PADDLE_ENFORCE_EQ(atten_b_dims.size(), 2,
                      "Input(AttentionBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(atten_b_dims[0], 1,
                      "AttentionBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(atten_b_dims[1], 1,
                      "AttentionBias shapes must be 1 * 1.");
  }

T
tensor-tang 已提交
124
  if (fair_input("AttentionScalar")) {
T
tensor-tang 已提交
125 126 127 128 129 130 131
    auto dims = ctx->GetInputDim("AttentionScalar");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalar)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalar shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalar shapes must be 1 * 1.");
  }

T
tensor-tang 已提交
132
  if (fair_input("AttentionScalarBias")) {
T
tensor-tang 已提交
133 134
    auto dims = ctx->GetInputDim("AttentionScalarBias");
    PADDLE_ENFORCE(
T
tensor-tang 已提交
135
        fair_input("AttentionScalar"),
T
tensor-tang 已提交
136 137 138 139 140 141 142 143
        "AttentionScalar should not be null when have AttentionScalarBias.");
    PADDLE_ENFORCE_EQ(dims.size(), 2,
                      "Input(AttentionScalarBias)'s rank must be 2.");
    PADDLE_ENFORCE_EQ(dims[0], 1, "AttentionScalarBias shapes must be 1 * 1.");
    PADDLE_ENFORCE_EQ(dims[1], 1, "AttentionScalarBias shapes must be 1 * 1.");
  }

  framework::DDim out_dims({x_dims[0], D});
T
tensor-tang 已提交
144 145
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
146 147 148 149
  ctx->SetOutputDim("AttentionedX", {x_dims[0], 1});
  ctx->SetOutputDim("LSTMX", {1, M});
  ctx->SetOutputDim("LSTMOUT", {1, 4 * D});
  // AttentionFCOut should be reshape as (maxseqlen,1) in runtime
T
tensor-tang 已提交
150 151 152 153
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
}

154
framework::OpKernelType AttentionLSTMOp::GetExpectedKernelType(
T
tensor-tang 已提交
155 156 157 158 159 160
    const framework::ExecutionContext& ctx) const {
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<framework::LoDTensor>("X")->type()),
      ctx.device_context());
}

161
void AttentionLSTMOpMaker::Make() {
T
tensor-tang 已提交
162 163 164 165 166
  AddInput("X",
           "(LoDTensor) the input is a LodTensor, which support "
           "variable-time length input sequence. The underlying tensor in "
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
167 168 169 170 171
  AddInput("C0",
           "(Tensor) LSTM C0"
           "This is a tensor with shape (N x D), where N is the batch size, D "
           "is the gate size."
           "C0 is necessary because of attention.");
T
tensor-tang 已提交
172
  AddInput("H0",
173 174 175
           "(Tensor, optional) LSTM H0"
           "This is a tensor with shape (N x D), where N is the "
           "batch size and D is the gate size.")
T
tensor-tang 已提交
176
      .AsDispensable();
177 178 179 180
  AddInput("AttentionWeight",
           "(Tensor) the weights of attention fc. Always relu the fc result."
           "The shape is ((M+D) x 1), where M is the dim size of x, D is the "
           "gate size of LSTM.");
T
tensor-tang 已提交
181 182
  AddInput("AttentionBias",
           "(Tensor, optional) the bias of attention fc."
183 184 185 186 187 188 189 190 191 192
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalar",
           "(Tensor, optional) the scalar on the result of attentioned fc. "
           "Always relu the Scalar."
           "The shape is (1 x 1)")
      .AsDispensable();
  AddInput("AttentionScalarBias",
           "(Tensor, optional) the scalar bias of attention fc."
           "The shape is (1 x 1)")
T
tensor-tang 已提交
193
      .AsDispensable();
194 195 196 197 198 199 200 201 202 203
  AddInput("LSTMWeight",
           "(Tensor) the combined weight of LSTM"
           " - The shape is ((D+M) x 4D), where D is the hidden gate size, M "
           "is the dim size of x"
           " - Weight = {W_forget, W_input, W_output, W_cell}");
  AddInput("LSTMBias",
           "(Tensor) the combined bias of LSTM, shape (1x4D)."
           "Note: we should add the bias of hidden and context accorindg to "
           "the same gate: "
           "{B_forget, B_input, B_output, B_cell}");
T
tensor-tang 已提交
204 205 206 207 208 209
  AddOutput("Hidden",
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
210 211 212 213
  AddOutput("AttentionedX",
            "(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
            " where T is the total time steps in this mini-batch,"
            " D is the hidden size.")
T
tensor-tang 已提交
214
      .AsIntermediate();
215 216
  AddOutput("AttentionFCOut",
            "(Tensor) (max_seq_len, 1), compute at each step.")
T
tensor-tang 已提交
217
      .AsIntermediate();
218 219 220 221 222 223 224 225 226
  AddOutput("LSTMX",
            "(Tensor) the input X of LSTM for each step."
            "Shape is (1 x M), where M is the x frame size")
      .AsIntermediate();
  AddOutput(
      "LSTMOUT",
      "(Tensor) the output of LSTM X(1*(D+M))* weight((D+M)*4D) for each step."
      "Shape is (1 x 4D), where M is the x frame size")
      .AsIntermediate();
T
tensor-tang 已提交
227 228 229 230 231
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
232
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
233 234 235 236
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
                       "The activation for cell output, `tanh` by defalut.")
      .SetDefault("tanh")
237
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
238 239 240 241 242
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
243
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
T
tensor-tang 已提交
244
  AddComment(R"DOC(
245 246 247 248 249 250 251 252 253 254 255 256 257 258
Attention Long-Short Term Memory (LSTM) Operator.

Attention part:
concat( x(seqlen * M), expand( cell_t-1(1,D) ) ) => tmp(seqlen*(M+D))

tmp(seqlen*(M+D)) * fc((M+D)*1) => fcout(seqlen*1) with bias, relu

fcout(seqlen*1) * scalar => fcout(seqlen*1) with bias, relu

dotmul and sum pool ( fcout(seqlen*1), x(seqlen * M) ) => lstm_x_t(1, M) 

LSTM part:
use lstm_x_t as input and compute as standard LSTM.

T
tensor-tang 已提交
259 260 261
)DOC");
}

262 263 264 265
// y[i] = (x[i] + bias[0]) > 0 ? (x[i] + bias[0]) : 0;
template <typename T>
inline void bias_relu(const int n, const T* x, const T* bias, T* y) {
  if (bias) {
T
tensor-tang 已提交
266 267
    math::vec_add_bias<T, platform::jit::avx>(n, *bias, x, y);
    math::vec_relu<T, platform::jit::avx>(n, y, y);
268
  } else {
T
tensor-tang 已提交
269
    math::vec_relu<T, platform::jit::avx>(n, x, y);
270 271 272
  }
}

T
tensor-tang 已提交
273 274
template <typename T>
inline void vec_softmax(const int n, const T* x, T* y) {
275 276 277 278 279
  T scalar = x[0];
  // max
  for (int i = 1; i < n; ++i) {
    scalar = scalar < x[i] ? x[i] : scalar;
  }
T
tensor-tang 已提交
280 281
  math::vec_add_bias<T, platform::jit::avx>(n, -scalar, x, y);  // sub
  math::vec_exp<T>(n, y, y);                                    // exp
282 283 284 285 286
  // sum
  scalar = T(0);
  for (int i = 0; i < n; ++i) {
    scalar += y[i];
  }
T
tensor-tang 已提交
287
  math::vec_scal<T>(n, static_cast<T>(1) / scalar, y);  // scale
288 289
}

T
tensor-tang 已提交
290
template <typename T>
291
class AttentionLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
292 293
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
294
    using DeviceContext = paddle::platform::CPUDeviceContext;
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

    auto* x = ctx.Input<LoDTensor>("X");
    auto* h0 = ctx.Input<Tensor>("H0");
    auto* c0 = ctx.Input<Tensor>("C0");
    auto* atten_w = ctx.Input<Tensor>("AttentionWeight");
    auto* atten_b = ctx.Input<Tensor>("AttentionBias");
    auto* atten_scalar = ctx.Input<Tensor>("AttentionScalar");
    auto* atten_scalar_bias = ctx.Input<Tensor>("AttentionScalarBias");
    auto* lstm_w = ctx.Input<Tensor>("LSTMWeight");
    auto* lstm_b = ctx.Input<Tensor>("LSTMBias");

    auto* hidden_out = ctx.Output<LoDTensor>("Hidden");
    auto* cell_out = ctx.Output<LoDTensor>("Cell");
    auto* atted_x = ctx.Output<Tensor>("AttentionedX");
    auto* fc_out = ctx.Output<Tensor>("AttentionFCOut");
    auto* lstm_x = ctx.Output<Tensor>("LSTMX");
    auto* lstm_out = ctx.Output<Tensor>("LSTMOUT");
T
tensor-tang 已提交
312 313 314 315 316

    // some shape should be reshape here since infershape can not get lod info
    auto x_lod = x->lod();
    const int N = x_lod[0].size() - 1;  // batch size
    auto x_dims = x->dims();            // T x M
T
tensor-tang 已提交
317 318 319 320
    auto w_dims = lstm_w->dims();       // (D+M) x 4D
    const int total_T = x_dims[0];
    const int M = x_dims[1];      // x frame size
    const int D = w_dims[1] / 4;  // gate frame size
T
tensor-tang 已提交
321 322 323 324 325 326 327 328 329 330 331
    const int D2 = D * 2;
    const int D3 = D * 3;
    const int D4 = w_dims[1];
    int max_seq_len = x_lod[0][1];
    for (int i = 1; i < N; ++i) {
      int len = x_lod[0][i + 1] - x_lod[0][i];
      max_seq_len = max_seq_len < len ? len : max_seq_len;
    }
    PADDLE_ENFORCE_EQ(x_lod.size(), 1, "Input(X)'s lod size must be 1.");
    PADDLE_ENFORCE_EQ(c0->dims()[0], N, "C0 dims should be %d x %d.", N, D);
    fc_out->Resize({max_seq_len, 1});
T
tensor-tang 已提交
332

333
    std::function<void(const int, const T *, T *)> act_gate, act_cell, act_cand;
T
tensor-tang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347
    auto& act_gate_str = ctx.Attr<std::string>("gate_activation");
    auto& act_cell_str = ctx.Attr<std::string>("cell_activation");
    auto& act_cand_str = ctx.Attr<std::string>("candidate_activation");
    if (platform::jit::MayIUse(platform::jit::avx)) {
      math::VecActivations<T, platform::jit::avx> act_functor;
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    } else {
      math::VecActivations<T, platform::jit::isa_any> act_functor;
      act_gate = act_functor(act_gate_str);
      act_cell = act_functor(act_cell_str);
      act_cand = act_functor(act_cand_str);
    }
T
tensor-tang 已提交
348

T
tensor-tang 已提交
349
    const T* x_data = x->data<T>();
T
tensor-tang 已提交
350
    const T* h0_data = h0 ? h0->data<T>() : NULL;
351 352 353 354 355 356 357 358 359
    const T* c0_data = c0->data<T>();
    const T* lstm_w_data = lstm_w->data<T>();
    const T* lstm_b_data = lstm_b->data<T>();
    const T* atten_w_data = atten_w->data<T>();
    const T* atten_b_data = atten_b ? atten_b->data<T>() : NULL;
    const T* atten_scalar_data = atten_scalar ? atten_scalar->data<T>() : NULL;
    const T* atten_scalar_bias_data =
        atten_scalar_bias ? atten_scalar_bias->data<T>() : NULL;

T
tensor-tang 已提交
360 361 362 363 364 365
    T* hidden_out_data = hidden_out->mutable_data<T>(ctx.GetPlace());
    T* cell_out_data = cell_out->mutable_data<T>(ctx.GetPlace());
    T* atted_x_data = atted_x->mutable_data<T>(ctx.GetPlace());
    T* fc_out_data = fc_out->mutable_data<T>(ctx.GetPlace());
    T* lstm_x_data = lstm_x->mutable_data<T>(ctx.GetPlace());
    T* lstm_out_data = lstm_out->mutable_data<T>(ctx.GetPlace());
366 367 368

    // x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
T
tensor-tang 已提交
369
    math::FCCompute<DeviceContext, T>(blas, total_T, 1, M, x_data, atten_w_data,
370 371
                                      atted_x_data, atten_b_data);

T
tensor-tang 已提交
372
    const T* cur_atten_x_data = atted_x_data;
373 374 375 376 377
    const T* cur_x_data = x_data;
    const T* prev_cell_data = NULL;
    const T* prev_hidden_data = NULL;
    T* cur_cell_out_data = cell_out_data;
    T* cur_hidden_out_data = hidden_out_data;
T
tensor-tang 已提交
378
    for (int i = 0; i < N; ++i) {
T
tensor-tang 已提交
379
      int seq_len = x_lod[0][i + 1] - x_lod[0][i];
380
      prev_cell_data = c0_data + i * D;
T
tensor-tang 已提交
381
      prev_hidden_data = h0_data ? h0_data + i * D : NULL;
382
      for (int step = 0; step < seq_len; ++step) {
T
tensor-tang 已提交
383 384
        /// 1. compute attention vector
        // 1a. prev_cell(1xD) * fc(D) rest part of atten_wgt
T
tensor-tang 已提交
385
        T prev_cell_bias = blas.DOT(D, prev_cell_data, atten_w_data + M);
T
tensor-tang 已提交
386 387 388
        // 1b. add cell bias and relu
        bias_relu<T>(seq_len, cur_atten_x_data, &prev_cell_bias, fc_out_data);
        // 1c. fc scalar
389
        if (atten_scalar_data) {
T
tensor-tang 已提交
390
          blas.SCAL(seq_len, *atten_scalar_data, fc_out_data);
391 392 393
          bias_relu<T>(seq_len, fc_out_data, atten_scalar_bias_data,
                       fc_out_data);
        }
T
tensor-tang 已提交
394
        // 1d. softmax
T
tensor-tang 已提交
395
        vec_softmax<T>(seq_len, fc_out_data, fc_out_data);
396 397 398 399
        // mul x(seq_len*M) and sum pool
        math::FCCompute<DeviceContext, T>(blas, 1, M, seq_len, fc_out_data,
                                          cur_x_data, lstm_x_data);

T
tensor-tang 已提交
400
        /// 2. compute LSTM step
401 402 403 404 405 406 407 408 409 410 411 412 413
        // lstm weight : concat[forget , input , output , tilde]
        // shape : (D + M) x (4 * D)
        // fc inputX(1xM) * weightX(M*(4D))  => 1 x 4D
        blas.MatMul(1, D4, M, lstm_x_data, lstm_w_data + D * D4, lstm_out_data);
        if (prev_hidden_data) {
          blas.GEMM(CblasNoTrans, CblasNoTrans, 1, D4, D, static_cast<T>(1),
                    prev_hidden_data, D, lstm_w_data, D4, static_cast<T>(1),
                    lstm_out_data, D4);
        }
        // since input is 1xM, so can use add bias
        blas.VADD(D4, lstm_b_data, lstm_out_data, lstm_out_data);

        // gate act: sigmoid
414
        act_gate(D3, lstm_out_data, lstm_out_data);
415
        // candicate act: tanh
416
        act_cand(D, lstm_out_data + D3, lstm_out_data + D3);
417 418 419 420 421

        // a = forget * prev_cell
        blas.VMUL(D, lstm_out_data, prev_cell_data, lstm_out_data);

        // b = input * tilde
T
tensor-tang 已提交
422
        blas.VMUL(D, lstm_out_data + D, lstm_out_data + D3, lstm_out_data + D);
423 424 425 426 427

        // cell_out = a + b
        blas.VADD(D, lstm_out_data, lstm_out_data + D, cur_cell_out_data);

        // state act tanh(cell_out) * output_gate
428
        act_cell(D, cur_cell_out_data, lstm_out_data);
T
tensor-tang 已提交
429
        blas.VMUL(D, lstm_out_data, lstm_out_data + D2, cur_hidden_out_data);
430

T
tensor-tang 已提交
431
        prev_hidden_data = cur_hidden_out_data;
432 433 434
        prev_cell_data = cur_cell_out_data;
        cur_cell_out_data = cur_cell_out_data + D;
        cur_hidden_out_data = cur_hidden_out_data + D;
T
tensor-tang 已提交
435
      }
436
      cur_x_data = cur_x_data + seq_len * M;
T
tensor-tang 已提交
437
      cur_atten_x_data = cur_atten_x_data + seq_len;
T
tensor-tang 已提交
438 439 440 441 442 443 444 445
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
446 447
REGISTER_OPERATOR(attention_lstm, ops::AttentionLSTMOp,
                  ops::AttentionLSTMOpMaker,
T
tensor-tang 已提交
448 449
                  paddle::framework::DefaultGradOpDescMaker<true>);

T
tensor-tang 已提交
450 451
REGISTER_OP_CPU_KERNEL(attention_lstm, ops::AttentionLSTMKernel<float>,
                       ops::AttentionLSTMKernel<double>);