backward.py 27.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from paddle.fluid import framework as framework
F
update  
fengjiayi 已提交
18
from . import core
F
update  
fengjiayi 已提交
19
import collections
20
import copy
21
import six
M
minqiyang 已提交
22
from .. import compat as cpt
23
from . import unique_name
24

Y
yuyang18 已提交
25
__all__ = ['append_backward']
26 27


28 29
def _rename_arg_(op_descs, old_name, new_name, begin_idx=None, end_idx=None):
    """
30
    Traverse all ops in op_descs[begin_idx : end_idx],
31 32
    if any op has inputs/outputs named "old_name", rename it as 'new_name'
    """
F
update  
fengjiayi 已提交
33 34 35
    if begin_idx is None:
        begin_idx = 0
    if end_idx is None:
36
        end_idx = len(op_descs)
F
update  
fengjiayi 已提交
37
    for i in range(begin_idx, end_idx):
38
        op_desc = op_descs[i]
F
fengjiayi 已提交
39 40
        if isinstance(op_desc, tuple):
            op_desc = op_desc[0]
W
Wu Yi 已提交
41 42
        op_desc._rename_input(old_name, new_name)
        op_desc._rename_output(old_name, new_name)
F
update  
fengjiayi 已提交
43 44


F
fengjiayi 已提交
45
def _create_op_desc_(op_type, inputs, outputs, attrs):
46 47 48
    """
    Create a C++ OpDesc object with specified inputs, outputs and attributes.
    """
F
fengjiayi 已提交
49 50
    op_desc = core.OpDesc()
    op_desc.set_type(op_type)
M
minqiyang 已提交
51
    for para, args in six.iteritems(inputs):
52 53 54 55 56
        op_desc.set_input(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
M
minqiyang 已提交
57
    for para, args in six.iteritems(outputs):
58 59 60 61 62
        op_desc.set_output(
            para,
            list(
                map(lambda arg: arg.decode() if isinstance(arg, six.binary_type) else arg,
                    args)))
Y
yuyang18 已提交
63 64 65 66 67 68

    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()

    if op_role_attr_name not in attrs:
        attrs[
            op_role_attr_name] = core.op_proto_and_checker_maker.OpRole.Backward
M
minqiyang 已提交
69
    for name, val in six.iteritems(attrs):
F
fengjiayi 已提交
70 71 72
        if isinstance(val, framework.Block):
            op_desc.set_block_attr(name, val.desc)
        else:
W
Wu Yi 已提交
73
            op_desc._set_attr(name, val)
74
    op_desc.check_attrs()
F
fengjiayi 已提交
75 76 77
    return op_desc


78 79 80 81
def _infer_var_data_type_(grad_var_name, block):
    """
    Infer the data type of given grad variable
    """
M
minqiyang 已提交
82 83 84 85
    grad_var = block.desc.find_var(cpt.to_bytes(grad_var_name))
    fwd_name = _strip_grad_suffix_(grad_var_name)
    if block.desc.has_var_recursive(cpt.to_bytes(fwd_name)):
        fwd_var = block.desc.find_var_recursive(cpt.to_bytes(fwd_name))
F
fengjiayi 已提交
86 87
        grad_var.set_dtype(fwd_var.dtype())
    else:
88
        grad_var.set_dtype(core.VarDesc.VarType.FP32)
F
fengjiayi 已提交
89 90


F
fengjiayi 已提交
91
def _all_in_set_(cands, s):
92 93 94
    """
    Test if all elements of 'cands' are in set 's'
    """
F
fengjiayi 已提交
95 96
    if len(cands) == 0:
        return False
F
fengjiayi 已提交
97 98 99 100 101 102
    for c in cands:
        if not c in s:
            return False
    return True


103 104 105 106 107 108
def _some_in_set_(cands, s):
    """
    Test if some elements of 'cands' are in set 's'
    """
    if len(cands) == 0:
        return False
M
minqiyang 已提交
109 110
    literal_set = cpt.to_text(s)
    literal_cands = cpt.to_text(cands)
M
minqiyang 已提交
111 112
    for c in literal_cands:
        if c in literal_set:
113 114 115 116
            return True
    return False


F
fengjiayi 已提交
117
def _strip_grad_suffix_(name):
118 119 120 121 122
    """
    Strip the grad suffix from the given varibale name
    e.g. x@GRAD ==> x
         y@GRAD@RENAME@1 ==> y
    """
M
minqiyang 已提交
123
    name = cpt.to_text(name)
M
minqiyang 已提交
124
    pos = name.find(core.grad_var_suffix())
F
fengjiayi 已提交
125
    return name[:pos] if pos != -1 else name
F
fengjiayi 已提交
126 127 128


def _append_grad_suffix_(name):
129 130 131 132
    """
    Append grad suffix to the given variable name
    e.g. x ==> x@GRAD
    """
M
minqiyang 已提交
133
    return cpt.to_text(name) + core.grad_var_suffix()
F
fengjiayi 已提交
134 135


F
fengjiayi 已提交
136
def _addup_repetitive_outputs_(op_descs):
137 138
    """
    In backward part, an variable may be the output of more than one ops.
F
fengjiayi 已提交
139 140
    And one op may yield its multiple outputs to the same variable.
    In these cases, the variable should be the accumulation of all the outputs.
141 142
    `sum_op`s are added to implement the accumulate.
    """
F
update  
fengjiayi 已提交
143 144
    pending_sum_ops = []
    var_rename_count = collections.defaultdict(int)
F
fengjiayi 已提交
145 146
    renamed_vars = collections.defaultdict(list)
    for idx, op_desc in enumerate(op_descs):
F
update  
fengjiayi 已提交
147
        for var_name in op_desc.input_arg_names():
F
fengjiayi 已提交
148
            if len(renamed_vars[var_name]) > 1:
149 150 151
                pending_sum_ops.append((_create_op_desc_(
                    "sum", {"X": renamed_vars[var_name]}, {"Out": [var_name]},
                    {"use_mkldnn": False}), idx))
F
fengjiayi 已提交
152
                renamed_vars[var_name] = [var_name]
F
update  
fengjiayi 已提交
153
        for param_idx, param_name in enumerate(op_desc.output_names()):
F
fengjiayi 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
            arg_names = op_desc.output(param_name)
            for arg_idx, var_name in enumerate(arg_names):
                if var_name == core.empty_var_name(
                ) or var_name in op_desc.input_arg_names():
                    # empty variable or inplace op
                    continue
                if len(renamed_vars[var_name]) == 0:
                    # it's the first time we get the variable
                    renamed_vars[var_name] = [var_name]
                else:
                    if len(renamed_vars[var_name]) == 1:
                        new_name = var_name + "@RENAME@" + \
                            str(var_rename_count[var_name])
                        var_rename_count[var_name] += 1
                        # rename original var_name
                        renamed_vars[var_name][0] = new_name
                        _rename_arg_(op_descs, var_name, new_name, 0, idx)
                        _rename_arg_(pending_sum_ops, var_name, new_name)

F
update  
fengjiayi 已提交
173 174 175 176 177 178 179 180 181 182 183 184 185
                        for p in op_desc.output_names()[:param_idx]:
                            p_arg_names = op_desc.output(p)
                            if var_name in p_arg_names:
                                op_desc.set_output(p, [
                                    new_name if x == var_name else x
                                    for x in p_arg_names
                                ])

                        arg_names = [
                            new_name if x == var_name else x
                            for x in arg_names[:arg_idx]
                        ] + arg_names[arg_idx:]

F
update  
fengjiayi 已提交
186
                    new_name = var_name + "@RENAME@" + \
F
fengjiayi 已提交
187
                        str(var_rename_count[var_name])
F
fengjiayi 已提交
188
                    var_rename_count[var_name] += 1
F
fengjiayi 已提交
189 190 191
                    arg_names[arg_idx] = new_name
                    op_desc.set_output(param_name, arg_names)
                    renamed_vars[var_name].append(new_name)
F
update  
fengjiayi 已提交
192

M
minqiyang 已提交
193
    for var_name, inputs in six.iteritems(renamed_vars):
F
update  
fengjiayi 已提交
194
        if len(inputs) > 1:
195 196 197
            pending_sum_ops.append(
                (_create_op_desc_("sum", {"X": inputs}, {"Out": [var_name]},
                                  {"use_mkldnn": False}), len(op_descs)))
F
fengjiayi 已提交
198
    # sum_op descs are sorted according to their insert position
F
update  
fengjiayi 已提交
199
    for p in reversed(pending_sum_ops):
F
fengjiayi 已提交
200 201 202 203 204 205
        op_descs.insert(p[1], p[0])

    return op_descs


def _remove_no_grad_branch_(op_descs, no_grad_set):
206 207 208 209
    """
    Remove unnecessary grad ops
    A grad op can be removed in two cases:
        1. all outputs of the grad op are in 'no_grad_set'
F
fengjiayi 已提交
210
        2. all grad inputs of the grad op are in 'no_grad_set'
211
    """
F
fengjiayi 已提交
212 213

    def _op_can_be_removed_(op_desc, no_grad_set):
F
fengjiayi 已提交
214 215
        out_arg_names = op_desc.output_arg_names()
        if len(out_arg_names) == 0 or _all_in_set_(out_arg_names, no_grad_set):
F
fengjiayi 已提交
216
            return True
217 218 219 220
        if _all_in_set_([
                name for name in op_desc.input_arg_names()
                if name.find(core.grad_var_suffix()) != -1
        ], no_grad_set):
F
fengjiayi 已提交
221
            no_grad_set.update(out_arg_names)
F
fengjiayi 已提交
222 223 224
            return True
        return False

F
fengjiayi 已提交
225
    # Remove ops whose outputs are all in no_grad_dict
226 227 228 229
    op_descs = [
        op_desc for op_desc in op_descs
        if not _op_can_be_removed_(op_desc, no_grad_set)
    ]
F
fengjiayi 已提交
230 231
    # Insert fill_zeros_like_op
    to_insert = []
F
fengjiayi 已提交
232
    for idx, op_desc in enumerate(op_descs):
F
fengjiayi 已提交
233
        for arg in op_desc.input_arg_names():
F
fengjiayi 已提交
234
            if core.grad_var_suffix() in arg and arg in no_grad_set:
235 236 237 238 239 240 241 242 243 244
                x_in = _strip_grad_suffix_(arg)
                x_in_var_desc = op_desc.block().find_var_recursive(
                    cpt.to_bytes(x_in))
                assert x_in_var_desc is not None, "Variable {} not found".format(
                    x_in)
                dtype = x_in_var_desc.dtype()

                to_insert.append(
                    (_create_op_desc_("fill_zeros_like2", {"X": [x_in]},
                                      {"Out": [arg]}, {"dtype": dtype}), idx))
F
fengjiayi 已提交
245

246
    list([op_descs.insert(p[1], p[0]) for p in reversed(to_insert)])
F
fengjiayi 已提交
247 248 249 250

    return op_descs


251
from .proto import framework_pb2
Y
Yang Yang 已提交
252 253 254 255


def serialize_op_decs(op_desc):
    protostr = op_desc.serialize_to_string()
M
minqiyang 已提交
256
    proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang 已提交
257 258 259
    return proto.__str__()


260 261
def _append_backward_ops_(block,
                          ops,
F
fengjiayi 已提交
262 263 264
                          target_block,
                          no_grad_dict,
                          grad_to_var,
Y
Yang Yang 已提交
265
                          callbacks=None):
266 267 268 269 270
    """
    Create all grad ops, and insert them into given block

    Args:
        block(Block): the block where forward ops are
271
        ops(Op): the forward operators whose backward ops need to be added
272
        target_block(Block): the block which is going to hold new generated grad ops
273
        no_grad_dict(dict):
274 275 276 277 278
            key(int)  block index
            val(set) a set of varibale names. These varibales have no gradient
        grad_to_var(dict)(output argument):
            key(str): grad variable name
            val(str): corresponding forward variable name
F
fengjiayi 已提交
279
        callback(callable object): a callable object used to decorate new generated grad ops
280
    """
Y
Yang Yang 已提交
281
    if callbacks is not None:
Y
Yang Yang 已提交
282 283 284 285
        assert (isinstance(callbacks, list))
        for cb in callbacks:
            if not hasattr(cb, '__call__'):
                raise ValueError("'callback' must be a callable object.")
F
fengjiayi 已提交
286

F
fengjiayi 已提交
287
    # grad_op_descs holds created grad_op, and will be appended to target_block
F
fengjiayi 已提交
288 289
    grad_op_descs = []
    program = block.program
290
    for op in reversed(ops):
F
fengjiayi 已提交
291 292 293
        grad_sub_block_list = []
        # If the op has its own sub-block, deal with the sub-block first
        if op.has_attr("sub_block"):
W
Wu Yi 已提交
294
            sub_block = program.block(op._block_attr_id("sub_block"))
W
Wu Yi 已提交
295
            grad_sub_block = program._create_block()
W
Wu Yi 已提交
296
            grad_sub_block._set_forward_block_idx(sub_block.idx)
X
Xin Pan 已提交
297 298
            _append_backward_ops_(sub_block, sub_block.ops, grad_sub_block,
                                  no_grad_dict, grad_to_var, callbacks)
Y
Yu Yang 已提交
299

W
Wu Yi 已提交
300
            program._rollback()
F
fengjiayi 已提交
301 302
            grad_sub_block_list.append(grad_sub_block.desc)

F
fengjiayi 已提交
303
        # Getting op's corresponding grad_op
F
fengjiayi 已提交
304
        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
M
minqiyang 已提交
305
            op.desc, cpt.to_text(no_grad_dict[block.idx]), grad_sub_block_list)
Y
Yang Yu 已提交
306

F
fengjiayi 已提交
307 308 309 310 311 312 313
        grad_op_descs.extend(grad_op_desc)
        grad_to_var.update(op_grad_to_var)

    grad_op_descs = _addup_repetitive_outputs_(grad_op_descs)

    grad_op_descs = _remove_no_grad_branch_(grad_op_descs,
                                            no_grad_dict[block.idx])
F
fengjiayi 已提交
314

F
fengjiayi 已提交
315
    # append op_desc in grad_op_descs to target_block
Y
yuyang18 已提交
316 317
    op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
    backward = core.op_proto_and_checker_maker.OpRole.Backward
F
update  
fengjiayi 已提交
318
    for op_desc in grad_op_descs:
F
fengjiayi 已提交
319 320
        new_op_desc = target_block.desc.append_op()
        new_op_desc.copy_from(op_desc)
W
Wu Yi 已提交
321
        new_op_desc._set_attr(op_role_attr_name, backward)
Y
Yang Yang 已提交
322
        grad_to_var["__current_op_desc__"] = new_op_desc
Y
Yang Yang 已提交
323 324 325 326
        if callbacks is not None:
            assert (isinstance(callbacks, list))
            for cb in callbacks:
                cb(block=target_block, context=grad_to_var)
F
update  
fengjiayi 已提交
327

F
fengjiayi 已提交
328 329

def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
330 331 332 333 334 335 336 337 338 339 340 341
    """
    Create new variables required by backward pass.

    Args:
        block(Block): the block where new variables will be created
        start_op_idx(int): Only variables required by ops in block.ops[start_op_idx : ] will be created
        grad_to_var(dict):
            key(str): grad variable name
            val(str): corresponding forward variable name
            In most cases, this dict is generated by _append_backward_ops_()
        grad_info_map(dict)(output argument):
            key(str): forward variable name
342
            val(tuple): a tuple of (str, Block), str is the corresponding grad name, Block is the block containing grad variable
343
    """
F
fengjiayi 已提交
344 345 346
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        if op_desc.has_attr("sub_block"):
W
Wu Yi 已提交
347
            sub_block = block.program.block(op_desc._block_attr_id("sub_block"))
F
fengjiayi 已提交
348 349 350 351
            _append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
        new_vars = set()
        # create new gradient variables
        for grad_var_name in op_desc.output_arg_names():
M
minqiyang 已提交
352 353
            if block.desc.has_var_recursive(cpt.to_bytes(
                    grad_var_name)) or grad_var_name == core.empty_var_name():
F
fengjiayi 已提交
354
                continue
M
minqiyang 已提交
355
            block.desc.var(cpt.to_bytes(grad_var_name))
F
fengjiayi 已提交
356
            new_vars.add(grad_var_name)
357
            if grad_var_name not in grad_to_var:
F
fengjiayi 已提交
358 359 360 361 362 363 364 365
                continue
            grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
        # infer_shape and infer_type
        op_desc.infer_var_type(block.desc)
        op_desc.infer_shape(block.desc)
        for arg in op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_(arg, block)
F
update  
fengjiayi 已提交
366 367


368 369 370 371 372 373
def _rename_grad_(block, start_op_idx, grad_to_var, target_grad_map):
    var_map = copy.copy(target_grad_map)
    for op_idx in range(start_op_idx, block.desc.op_size()):
        op_desc = block.desc.op(op_idx)
        for name in op_desc.input_arg_names():
            if name in var_map:
W
Wu Yi 已提交
374
                op_desc._rename_input(name, var_map[name])
375 376 377

        for name in op_desc.output_arg_names():
            if block.desc.find_var(name.encode("ascii")):
Y
Yu Yang 已提交
378
                new_name = unique_name.generate(name)
W
Wu Yi 已提交
379
                op_desc._rename_output(name, new_name)
380 381
                var_map[name] = new_name

M
minqiyang 已提交
382
    for g, ng in six.iteritems(var_map):
383 384 385 386 387 388 389 390 391 392 393
        if g in grad_to_var:
            grad_to_var[ng] = grad_to_var[g]
            grad_to_var.pop(g)


def _get_stop_gradients_(program):
    no_grad_dict = dict()
    assert isinstance(program, framework.Program)
    for block in program.blocks:
        assert isinstance(block, framework.Block)
        block_no_grad_set = set()
394
        for var in list(block.vars.values()):
395 396 397 398 399 400 401
            assert isinstance(var, framework.Variable)
            if var.stop_gradient:
                block_no_grad_set.add(_append_grad_suffix_(var.name))
        no_grad_dict[block.idx] = block_no_grad_set
    return no_grad_dict


Y
Yang Yang 已提交
402 403
def append_backward(loss, parameter_list=None, no_grad_set=None,
                    callbacks=None):
404
    """
F
fengjiayi 已提交
405 406
    Append backward part to main_program.

407 408 409
    A complete neural network training is made up of forward and backward
    propagation. However, when we configure a network, we only need to
    specify its forwrd part. The backward part is generated automatically
F
fengjiayi 已提交
410 411
    according to the forward part by this function.

412
    In most cases, users do not need to invoke this function manually. It
F
fengjiayi 已提交
413
    will be automatically invoked by the optimizer's `minimize` function.
F
fengjiayi 已提交
414 415

    Args:
F
fengjiayi 已提交
416
        loss(Variable): The loss variable of the network.
417 418 419
        parameter_list(list[string]|None): Names of parameters that need
                                           to be updated by optimizers.
                                           If it is None, all parameters
F
fengjiayi 已提交
420 421
                                           will be updated.
                                           Default: None
422 423 424
        no_grad_set(set|None): Variables in the Block 0 whose gradients
                               should be ignored. All variables with
                               `step_gradient=True` from all blocks will
F
fengjiayi 已提交
425 426
                               be automatically added into this set.
                               Default: None
427 428 429 430 431 432 433 434 435 436 437 438 439 440
        callbacks(list[callable object]|None): The callbacks are used for
                                               doing some custom jobs during
                                               backward part building. All
                                               callable objects in it will
                                               be invoked once each time a
                                               new gradient operator is added
                                               into the program. The callable
                                               object must has two input
                                               parameters: 'block' and 'context'.
                                               The 'block' is the block which
                                               the new gradient operator will
                                               be added to. The 'context' is a
                                               map, whose keys are gradient
                                               variable names and values are
F
fengjiayi 已提交
441
                                               corresponding original variables.
442 443 444 445 446 447
                                               In addition to this, the 'context'
                                               has another special key-value pair:
                                               the key is string '__current_op_desc__'
                                               and the value is the op_desc of the
                                               gradient operator who has just
                                               triggered the callable object.
F
fengjiayi 已提交
448 449

    Returns:
450 451
        list[(Variable,Variable)]: Pairs of parameter and its
        corresponding gradients. The key is the parameter and the
F
fengjiayi 已提交
452 453 454 455 456 457 458 459
        value is gradient variable.

    Raises:
        AssertionError: If `loss` is not an instance of Variable.

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
460
            # network configuration code
L
lujun 已提交
461 462 463 464 465 466 467
            # loss from ...
            x = fluid.layers.data(name='x', shape=[13], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')

            y_predict = fluid.layers.fc(input=x, size=1, act=None)
            loss = fluid.layers.square_error_cost(input=y_predict, label=y)

F
fengjiayi 已提交
468 469
            avg_loss = fluid.layers.mean(loss)
            param_grad_list = fluid.backward.append_backward(loss=avg_loss)
470 471
    """
    assert isinstance(loss, framework.Variable)
Y
yuyang18 已提交
472

Y
Fix bug  
yuyang18 已提交
473 474 475 476 477 478 479 480 481 482 483
    if loss.op is None:
        # the loss is from a cloned program. Find loss op manually.
        for op in reversed(loss.block.ops):
            assert isinstance(op, framework.Operator)
            if len(op.output_arg_names) == 1 and op.output_arg_names[
                    0] == loss.name:
                loss.op = op
                break
        if loss.op is None:
            raise ValueError("loss.op is None. Should not happend")

W
Wu Yi 已提交
484 485 486
    loss.op._set_attr(core.op_proto_and_checker_maker.kOpRoleAttrName(),
                      int(core.op_proto_and_checker_maker.OpRole.Forward) |
                      int(core.op_proto_and_checker_maker.OpRole.Loss))
Y
yuyang18 已提交
487

Y
Yang Yang 已提交
488 489
    if callbacks is not None:
        isinstance(callbacks, list)
Y
Yu Yang 已提交
490

F
fengjiayi 已提交
491
    program = loss.block.program
F
fengjiayi 已提交
492
    if no_grad_set is None:
493 494 495
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(program)
496
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
Y
Yu Yang 已提交
497

F
update  
fengjiayi 已提交
498
    grad_info_map = dict()
F
fengjiayi 已提交
499
    root_block = program.block(0)
F
fengjiayi 已提交
500

F
fengjiayi 已提交
501 502
    fwd_op_num = root_block.desc.op_size()
    current_block_idx = program.current_block_idx
F
fengjiayi 已提交
503 504
    grad_to_var = dict()

Y
yuyang18 已提交
505
    op_desc = _create_op_desc_(
X
Xin Pan 已提交
506 507 508 509 510
        "fill_constant",
        {},
        {"Out": [_append_grad_suffix_(loss.name)]},
        {
            "shape": [1],  # TODO(panyx0718): This can be loss.shape.
Y
yuyang18 已提交
511 512 513 514 515 516 517
            "value": 1.0,
            "dtype": loss.dtype,
            "force_cpu": False,
            core.op_proto_and_checker_maker.kOpRoleAttrName():
            int(core.op_proto_and_checker_maker.OpRole.Backward) |
            int(core.op_proto_and_checker_maker.OpRole.Loss),
        })
518 519 520 521
    root_block.desc.append_op().copy_from(op_desc)

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(root_block, [loss], [], block_no_grad_set)
522
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
523 524

    _append_backward_ops_(root_block, op_path, root_block, no_grad_dict,
Y
Yang Yang 已提交
525
                          grad_to_var, callbacks)
526 527 528 529 530 531

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(root_block, fwd_op_num, grad_to_var, {})

F
fengjiayi 已提交
532
    _append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
F
fengjiayi 已提交
533

F
fengjiayi 已提交
534
    program.current_block_idx = current_block_idx
W
Wu Yi 已提交
535
    program._sync_with_cpp()
F
fengjiayi 已提交
536

537 538 539
    if parameter_list is not None:
        parameters = parameter_list
    else:
F
fengjiayi 已提交
540
        params = program.global_block().all_parameters()
M
minqiyang 已提交
541
        program.global_block().iter_parameters()
542
        parameters = [param.name for param in params]
543

544 545
    params_and_grads = []
    for param in parameters:
M
minqiyang 已提交
546
        if cpt.to_text(param) not in grad_info_map:
F
fengjiayi 已提交
547
            continue
F
update  
fengjiayi 已提交
548
        grad_info = grad_info_map[param]
F
fengjiayi 已提交
549
        grad_block = grad_info[1]
550 551 552 553
        if not grad_block.has_var(grad_info[0]):
            raise ValueError("grad block[{0}] did not have grad var {1}".format(
                grad_info[1], grad_info[0]))
        # Get the param var from the global block
F
fengjiayi 已提交
554
        param_var = program.global_block().var(param)
555 556 557 558 559
        grad_var = grad_block.var(grad_info[0])
        if loss.block.has_var(grad_info[0]):
            params_and_grads.append((param_var, grad_var))
        else:
            params_and_grads.append((param_var, None))
Y
yuyang18 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572

    op_role_var_attr_name = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
    for p, g in params_and_grads:
        if g is None:
            continue
        for op in reversed(program.global_block().ops):
            assert isinstance(op, framework.Operator)
            if g.name in op.output_arg_names:
                g.op = op
                break

        if g.op is None:
            raise ValueError("Unexpected branch")
Y
yuyang18 已提交
573
        attr_val = [p.name, g.name]
Y
yuyang18 已提交
574 575
        if g.op.has_attr(op_role_var_attr_name):
            attr_val.extend(g.op.attr(op_role_var_attr_name))
W
Wu Yi 已提交
576
        g.op._set_attr(op_role_var_attr_name, attr_val)
Y
yuyang18 已提交
577

578
    return params_and_grads
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620


def _as_list(x):
    if x is None:
        return []
    return list(x) if isinstance(x, collections.Sequence) else [x]


def _find_op_path_(block, outputs, inputs, no_grad_set):
    """
    no_grad_set will also be changed
    """
    input_names = set([inp.name for inp in inputs])
    output_names = set([out.name for out in outputs])

    relevant_op_flags = [True] * len(block.ops)

    # All the inputs of the block are used if inputs is empty,
    if inputs:
        for i, op in enumerate(block.ops):
            if _some_in_set_(op.desc.input_arg_names(), input_names):
                for name in op.desc.output_arg_names():
                    if name not in no_grad_set:
                        input_names.add(name)
            else:
                relevant_op_flags[i] = False

    for i, op in reversed(list(enumerate(block.ops))):
        if _some_in_set_(op.desc.output_arg_names(), output_names):
            for name in op.desc.input_arg_names():
                if name not in no_grad_set:
                    output_names.add(name)
        else:
            relevant_op_flags[i] = False

    op_path = [
        block.ops[i] for i in range(len(block.ops)) if relevant_op_flags[i]
    ]

    if inputs:
        for op in op_path:
            for name in op.desc.input_arg_names():
621
                if name not in input_names and block.vars[name].stop_gradient:
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
                    no_grad_set.add(name)

    return op_path


def calc_gradient(targets, inputs, target_gradients=None, no_grad_set=None):
    """
    Backpropagate the graidents of targets to inputs.

    Args:
        targets(Variable|list[Variable]): The target variables
        inputs(Variable|list[Variable]): The input variables
        no_grad_set(set[string]): The names of variables that have no gradients
            in Block 0. All variables with `stop_gradient=True` from all blocks
            will be automatically added.

    Return:
        (list[Variable]): list of gradients for inputs
        If an input does not affect targets, the corresponding gradient variable
        will be None
    """
    targets = _as_list(targets)
    inputs = _as_list(inputs)
    target_gradients = _as_list(target_gradients)

    block = targets[0].block
    prog = block.program
    block_idx = block.idx

    if not target_gradients:
        target_gradients = [None] * len(targets)

    if len(targets) != len(target_gradients):
        raise ValueError(
            "Should have the same number of target_gradients as targets")

    if no_grad_set is None:
        no_grad_set = set()
    no_grad_set = copy.copy(no_grad_set)
    no_grad_dict = _get_stop_gradients_(prog)
662
    no_grad_dict[0].update(list(map(_append_grad_suffix_, no_grad_set)))
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695

    fwd_op_num = block.desc.op_size()

    target_grad_map = {}
    for i, grad in enumerate(target_gradients):
        target = targets[i]
        if grad is None:
            grad_name = _append_grad_suffix_(target.name)
            op_desc = _create_op_desc_("fill_constant_batch_size_like",
                                       {"Input": [target.name]},
                                       {"Out": [grad_name]}, {
                                           "shape": target.shape,
                                           "value": 1.0,
                                           "dtype": target.dtype,
                                           'input_dim_idx': 0,
                                           'output_dim_idx': 0
                                       })
            block.desc.append_op().copy_from(op_desc)
        else:
            if target.block.idx != block_idx or target.block.program != prog:
                raise ValueError("all targets must be in the same block")
            if target.shape != grad.shape:
                raise ValueError(
                    "The shapes of target and grad are different: %s %s" % (
                        target.name, grad.name))
            target_grad_map[_append_grad_suffix_(target.name)] = grad.name

    for input in inputs:
        if input.block.program != prog:
            raise "input must be in the same program as targets"

    block_no_grad_set = set(map(_strip_grad_suffix_, no_grad_dict[0]))
    op_path = _find_op_path_(block, targets, inputs, block_no_grad_set)
696
    no_grad_dict[0].update(list(map(_append_grad_suffix_, block_no_grad_set)))
697 698 699 700 701 702 703 704 705 706
    grad_to_var = dict()
    grad_info_map = dict()
    _append_backward_ops_(block, op_path, block, no_grad_dict, grad_to_var)

    # Because calc_gradient may be called multiple times,
    # we need rename the internal gradient variables so that they have
    # different names.
    _rename_grad_(block, fwd_op_num, grad_to_var, target_grad_map)

    _append_backward_vars_(block, fwd_op_num, grad_to_var, grad_info_map)
W
Wu Yi 已提交
707
    prog._sync_with_cpp()
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722

    grad_vars = []
    for input_var in inputs:
        if input_var.name not in grad_info_map:
            grad_vars.append(None)
        else:
            grad_info = grad_info_map[input_var.name]
            grad_block = grad_info[1]
            grad_var = grad_block.var(grad_info[0])
            grad_vars.append(grad_var)

    if len(grad_vars) == 1:
        return grad_vars[0]
    else:
        return grad_vars