data_feeder.py 23.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place, in_dygraph_mode
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28
__all__ = ['DataFeeder']

L
Leo Chen 已提交
29 30 31
_PADDLE_DTYPE_2_NUMPY_DTYPE = {
    core.VarDesc.VarType.BOOL: 'bool',
    core.VarDesc.VarType.FP16: 'float16',
32
    core.VarDesc.VarType.BF16: 'uint16',
L
Leo Chen 已提交
33 34 35 36 37 38 39 40 41 42 43
    core.VarDesc.VarType.FP32: 'float32',
    core.VarDesc.VarType.FP64: 'float64',
    core.VarDesc.VarType.INT8: 'int8',
    core.VarDesc.VarType.INT16: 'int16',
    core.VarDesc.VarType.INT32: 'int32',
    core.VarDesc.VarType.INT64: 'int64',
    core.VarDesc.VarType.UINT8: 'uint8',
    core.VarDesc.VarType.COMPLEX64: 'complex64',
    core.VarDesc.VarType.COMPLEX128: 'complex128',
}

Y
Yu Yang 已提交
44

S
sneaxiy 已提交
45
def convert_dtype(dtype):
P
pkpk 已提交
46
    if isinstance(dtype, core.VarDesc.VarType):
L
Leo Chen 已提交
47 48
        if dtype in _PADDLE_DTYPE_2_NUMPY_DTYPE:
            return _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
49 50
    elif isinstance(dtype, type):
        if dtype in [
51 52 53
                np.bool, np.float16, np.uint16, np.float32, np.float64, np.int8,
                np.int16, np.int32, np.int64, np.uint8, np.complex64,
                np.complex128
54 55
        ]:
            return dtype.__name__
P
pkpk 已提交
56 57
    else:
        if dtype in [
58 59 60 61 62
                'bool', 'float16', 'uint16', 'float32', 'float64', 'int8',
                'int16', 'int32', 'int64', 'uint8', 'complex64', 'complex128',
                u'bool', u'float16', u'uint16', u'float32', u'float64', u'int8',
                u'int16', u'int32', u'int64', u'uint8', u'complex64',
                u'complex128'
P
pkpk 已提交
63 64
        ]:
            # this code is a little bit dangerous, since error could happen
65
            # when casting no-ascii code to str in python2.
P
pkpk 已提交
66 67 68 69 70
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

71
    raise TypeError(
72
        "dtype must be any of [bool, float16, uint16, float32, float64, int8, int16, "
73
        "int32, int64, uint8, complex64, complex128], but received %s" % dtype)
S
sneaxiy 已提交
74 75


76 77 78 79 80
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
81
    check_type(input, input_name, Variable, op_name, extra_message)
82 83 84 85
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
86 87 88 89 90 91 92 93 94
    # NOTE [ Why skip dynamic graph check ]:
    # 1. If the input type / dtype of a layer is wrong, it will be reported
    # directly on that line. User can easily print the relevant information
    # on which line. It is easier to debug, so there is no need to check
    # in dynamic graph mode.
    # 2. Performance considerations. Because these checks are executed at
    # each step in dynamic graph mode, it will bring a heavy performance burden.
    if in_dygraph_mode():
        return
95 96 97 98

    # NOTE: `in_declarative_mode` is used to determined whether this op is called under
    # @declarative in transformation from dygrah to static layer. We add VarBase in
    # expected_type to skip checking because varBase may be created and used in unusual way.
99
    from .dygraph.base import in_declarative_mode
100 101 102 103 104 105 106 107 108 109 110
    # Need a better design to be fix this.
    if in_declarative_mode():
        if not isinstance(expected_type, tuple):
            expected_type = (expected_type, )
        expected_type += (core.VarBase, )
    elif isinstance(input, core.VarBase):
        raise TypeError(
            "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
            "Because received '{}' in {} is a imperative Variable.".format(
                input_name, op_name))

111 112 113 114 115 116 117 118 119 120 121
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
122 123 124
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
125 126 127 128
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
129 130 131 132 133 134
    if convert_dtype(input_dtype) in ['uint16'] and op_name not in [
            'reshape', 'lookup_table', 'scale'
    ]:
        warnings.warn(
            "The data type of '%s' in %s only support bfloat16 in OneDNN now. %s"
            % (input_name, op_name, extra_message))
135 136 137 138 139 140 141
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
def check_shape(shape,
                op_name,
                expected_shape_type=(list, tuple, Variable),
                expected_element_type=(int, Variable),
                expected_tensor_dtype=('int32', 'int64')):
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
    check_type(shape, 'shape', expected_shape_type, op_name)
    if expected_element_type is not None and not isinstance(shape, Variable):
        for item in shape:
            check_type(item, 'element of shape', expected_element_type, op_name)
            if expected_tensor_dtype is not None and isinstance(item, Variable):
                check_dtype(
                    item.dtype, 'element of shape', expected_tensor_dtype,
                    op_name,
                    'If element of shape is Tensor, its data type should be {}'.
                    format(', '.join(expected_tensor_dtype)))
    if expected_tensor_dtype is not None and isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', expected_tensor_dtype, op_name)


Y
Yu Yang 已提交
164 165 166 167 168
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
169 170 171 172 173 174 175
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
176 177
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
178

S
sneaxiy 已提交
179
    def _reset(self):
Y
Yu Yang 已提交
180
        self.data = []
S
sneaxiy 已提交
181
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
182 183 184 185 186 187 188 189

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
190
            lod[0].append(len(data))
Y
Yu Yang 已提交
191
            for each_data in data:
K
Kexin Zhao 已提交
192
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
193

S
sneaxiy 已提交
194
    def _check_shape(self, shape):
S
sneaxiy 已提交
195 196 197 198 199 200
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
201
    def done(self):
202
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
203 204
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
205 206 207 208 209 210
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
211 212 213
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
214
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
215
        self._reset()
Y
Yu Yang 已提交
216 217 218
        return t


S
sneaxiy 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
257
class DataFeeder(object):
C
chengduoZH 已提交
258
    """
259 260
    :api_attr: Static Graph
    
C
chengduoZH 已提交
261
    DataFeeder converts the data that returned by a reader into a data
262 263 264 265 266 267 268 269 270 271 272 273 274 275
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
276 277

    Raises:
278
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
279

280
    Example:
281 282 283 284 285 286
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
287
            place = fluid.CPUPlace()
288
            def reader():
289 290
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
291 292 293 294 295
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
296 297
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
298 299 300
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
301
            
302 303
            exe = fluid.Executor(place)
            exe.run(startup_program)
304 305 306 307 308 309 310 311 312 313
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
314
            print(outs)
315

C
chengduoZH 已提交
316 317
    """

F
fengjiayi 已提交
318
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
319 320 321 322
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
323 324
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
325
        for each_var in feed_list:
326
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
327
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
328 329 330 331 332
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
333
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
334 335 336 337

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
338
        """
339 340
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
341

342 343
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
344

345 346
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
347

348
        Example:
349 350
            ..  code-block:: python

351 352 353 354 355 356
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
357 358 359
                import paddle.fluid as fluid
                
                def reader(limit=5):
360 361
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
362
                
363 364 365
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
366 367
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
368 369 370 371
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
372
                print(result['data_3'])
373

C
chengduoZH 已提交
374
        """
Y
Yu Yang 已提交
375
        converter = []
376
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
377 378 379 380 381 382 383 384 385
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
386
            assert len(each_sample) == len(converter), (
387 388
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
389 390
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
391 392
                each_converter.feed(each_slot)
        ret_dict = {}
393 394
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
395 396
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
397 398

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
399
        """
400 401
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
402
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
403

404
        Parameters:
T
tianshuo78520a 已提交
405
            iterable (list|tuple): list of user-defined python generators. The element 
406 407 408
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
409

410 411 412
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
413

414 415
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
416

417
        Example:
418 419
            ..  code-block:: python

420
                import numpy as np
421
                import paddle.fluid as fluid
422

423 424 425 426 427
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
428 429 430 431

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

432
                z = fluid.layers.elementwise_add(x, y)
433

434
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
435
                place_num = 2
436 437 438 439 440
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
441

T
tianshuo78520a 已提交
442
                # print sample feed_parallel r result
443 444 445
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
446

447 448 449
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
450

C
chengduoZH 已提交
451
        """
Y
yuyang18 已提交
452 453 454
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
455 456
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
457 458 459 460
            ]
        else:
            places = [
                core.CPUPlace()
461 462
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
463 464 465 466 467 468 469 470 471
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
472
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
473 474 475 476 477 478 479 480
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
481
            return len(_cuda_ids())
Y
yuyang18 已提交
482
        else:
C
chengduo 已提交
483
            return _cpu_num()
Y
yuyang18 已提交
484 485 486 487 488 489

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
490
        """
491 492 493 494 495
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
496
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
497 498 499 500 501 502 503 504 505 506 507
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
508
        Raises:
509
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
510

511
        Example:
512 513
            ..  code-block:: python

514
                import numpy as np
515 516
                import paddle
                import paddle.fluid as fluid
517
                import paddle.fluid.compiler as compiler
518
                
519 520 521 522
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
523

524 525
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
526
                
527 528
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
529
                
530
                # a simple network sample
531 532
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
533 534
                hidden = fluid.layers.fc(input=data, size=10)
                
535 536
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
537
                
538
                exe = fluid.Executor(places[0])
539
                exe.run(fluid.default_startup_program())
540
                compiled_prog = compiler.CompiledProgram(
541 542
                         fluid.default_main_program()).with_data_parallel(places=places)
                
543
                for i,data in enumerate(reader()):
544 545
                    # print data if you like
                    # print(i, data)
546
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
547 548
                    print(ret)

C
chengduoZH 已提交
549 550
        """

Y
yuyang18 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__