data_feeder.py 10.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15 16 17
from __future__ import print_function
import core
import numpy
C
chengduoZH 已提交
18
import os
Y
Yu Yang 已提交
19
import six.moves as six
Y
yuyang18 已提交
20
import multiprocessing
Y
Yu Yang 已提交
21

F
fengjiayi 已提交
22
from framework import Variable, default_main_program
Y
Yu Yang 已提交
23 24 25 26 27 28 29 30 31

__all__ = ['DataFeeder']


class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
32 33 34 35 36 37 38
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
39
        if dtype == core.VarDesc.VarType.FP32:
Y
Yu Yang 已提交
40
            self.dtype = 'float32'
41
        elif dtype == core.VarDesc.VarType.INT64:
Y
Yu Yang 已提交
42
            self.dtype = 'int64'
43
        elif dtype == core.VarDesc.VarType.FP64:
Y
Yu Yang 已提交
44
            self.dtype = 'float64'
45
        elif dtype == core.VarDesc.VarType.INT32:
Y
Yu Yang 已提交
46
            self.dtype = 'int32'
F
fengjiayi 已提交
47 48
        elif dtype == core.VarDesc.VarType.UINT8:
            self.dtype = 'uint8'
Y
Yu Yang 已提交
49 50
        else:
            raise ValueError("dtype must be any of [int32, float32, int64, "
F
fengjiayi 已提交
51
                             "float64, uint8]")
Y
Yu Yang 已提交
52 53 54 55 56

        self.data = []
        self.lod = []

        for i in six.range(lod_level):
57
            self.lod.append([])
Y
Yu Yang 已提交
58 59 60 61 62 63 64 65

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
66
            lod[0].append(len(data))
Y
Yu Yang 已提交
67
            for each_data in data:
K
Kexin Zhao 已提交
68
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
69 70

    def done(self):
71 72 73
        arr = numpy.array(self.data, dtype=self.dtype)
        if self.shape:
            arr = arr.reshape(self.shape)
Y
Yu Yang 已提交
74 75 76
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
77
            t.set_recursive_sequence_lengths(self.lod)
Y
Yu Yang 已提交
78 79 80 81
        return t


class DataFeeder(object):
C
chengduoZH 已提交
82
    """
C
chengduoZH 已提交
83 84
    DataFeeder converts the data that returned by a reader into a data
    structure that can feed into Executor and ParallelExecutor. The reader
C
chengduoZH 已提交
85
    usually returns a list of mini-batch data entries. Each data entry in
C
chengduoZH 已提交
86 87
    the list is one sample. Each sample is a list or a tuple with one
    feature or multiple features.
C
chengduoZH 已提交
88 89 90 91 92 93

    The simple usage shows below:

    ..  code-block:: python

        place = fluid.CPUPlace()
C
chengduoZH 已提交
94
        img = fluid.layers.data(name='image', shape=[1, 28, 28])
C
chengduoZH 已提交
95
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
C
chengduoZH 已提交
96 97
        feeder = fluid.DataFeeder([img, label], fluid.CPUPlace())
        result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])])
C
chengduoZH 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112


    If you want to feed data into GPU side separately in advance when you
    use multi-GPU to train a model, you can use `decorate_reader` function.

    ..  code-block:: python

        place=fluid.CUDAPlace(0)
        feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
        reader = feeder.decorate_reader(
            paddle.batch(flowers.train(), batch_size=16))

    Args:
        feed_list(list): The Variables or Variables'name that will
            feed into model.
C
chengduoZH 已提交
113 114 115 116
        place(Place): place indicates feed data into CPU or GPU, if you want to
            feed data into GPU, please using `fluid.CUDAPlace(i)` (`i` represents
            the GPU id), or if you want to feed data into CPU, please using
            `fluid.CPUPlace()`.
C
chengduoZH 已提交
117 118 119 120
        program(Program): The Program that will feed data into, if program
            is None, it will use default_main_program(). Default None.

    Raises:
C
chengduoZH 已提交
121
        ValueError: If some Variable is not in this Program.
C
chengduoZH 已提交
122 123 124 125 126 127 128 129

    Examples:
        .. code-block:: python

            # ...
            place = fluid.CPUPlace()
            feed_list = [
                main_program.global_block().var(var_name) for var_name in feed_vars_name
C
chengduoZH 已提交
130
            ] # feed_vars_name is a list of variables' name.
C
chengduoZH 已提交
131 132 133 134 135 136
            feeder = fluid.DataFeeder(feed_list, place)
            for data in reader():
                outs = exe.run(program=main_program,
                               feed=feeder.feed(data))
    """

F
fengjiayi 已提交
137
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
138 139 140 141
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
142 143
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
144
        for each_var in feed_list:
F
fengjiayi 已提交
145 146
            if isinstance(each_var, basestring):
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            shape = each_var.shape
            batch_size_dim = -1
            for i, s in enumerate(shape):
                if s < 0:
                    batch_size_dim = i
                    break
            if batch_size_dim == -1:
                raise ValueError("Variable {0} must has a batch size dimension",
                                 each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
            self.feed_shapes.append(shape)

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
166
        """
C
chengduoZH 已提交
167 168
        According to feed_list and iterable, converters the input into
        a data structure that can feed into Executor and ParallelExecutor.
C
chengduoZH 已提交
169 170 171 172 173 174 175

        Args:
            iterable(list|tuple): the input data.

        Returns:
            dict: the result of conversion.
        """
Y
Yu Yang 已提交
176 177 178 179 180 181 182 183 184 185 186
        converter = []
        for lod_level, shape, dtype in six.zip(
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
187 188 189
            assert len(each_sample) == len(converter), (
                "The number of fields in data (%s) does not match " +
                "len(feed_list) (%s)") % (len(each_sample), len(converter))
Y
Yu Yang 已提交
190 191 192 193 194 195
            for each_converter, each_slot in six.zip(converter, each_sample):
                each_converter.feed(each_slot)
        ret_dict = {}
        for each_name, each_converter in six.zip(self.feed_names, converter):
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
196 197

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
198 199
        """
        Takes multiple mini-batches. Each mini-batch will be feed on each
C
chengduoZH 已提交
200
        device in advance.
C
chengduoZH 已提交
201 202 203

        Args:
            iterable(list|tuple): the input data.
C
chengduoZH 已提交
204
            num_places(int): the number of devices. Default None.
C
chengduoZH 已提交
205 206 207 208 209 210 211

        Returns:
            dict: the result of conversion.

        Notes:
            The number of devices and number of mini-batches must be same.
        """
Y
yuyang18 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
                for i in six.xrange(self._get_number_of_places_(num_places))
            ]
        else:
            places = [
                core.CPUPlace()
                for _ in six.xrange(self._get_number_of_places_(num_places))
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
        for p, batch in six.zip(places, iterable):
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
            return core.get_cuda_device_count()
        else:
C
chengduoZH 已提交
241 242 243
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            return cpu_num
Y
yuyang18 已提交
244 245 246 247 248 249

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        """
        Converter the input data into a data that returned by reader into
        multiple mini-batches. Each mini-batch will be feed on each device.

        Args:
            reader(fun): the input data.
            multi_devices(bool): the number of places. Default None.
            num_places(int): the number of places. Default None.
            drop_last(bool): the number of places. Default None.

        Returns:
            dict: the result of conversion.

        Raises:
            ValueError: If drop_last is False and the data batch which cannot
            fit for devices.
        """

Y
yuyang18 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__