data_feeder.py 21.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place, in_dygraph_mode
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28 29
__all__ = ['DataFeeder']


S
sneaxiy 已提交
30
def convert_dtype(dtype):
P
pkpk 已提交
31
    if isinstance(dtype, core.VarDesc.VarType):
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        if dtype == core.VarDesc.VarType.BOOL:
            return 'bool'
        elif dtype == core.VarDesc.VarType.FP16:
            return 'float16'
        elif dtype == core.VarDesc.VarType.FP32:
            return 'float32'
        elif dtype == core.VarDesc.VarType.FP64:
            return 'float64'
        elif dtype == core.VarDesc.VarType.INT8:
            return 'int8'
        elif dtype == core.VarDesc.VarType.INT16:
            return 'int16'
        elif dtype == core.VarDesc.VarType.INT32:
            return 'int32'
        elif dtype == core.VarDesc.VarType.INT64:
            return 'int64'
        elif dtype == core.VarDesc.VarType.UINT8:
            return 'uint8'
50 51 52 53 54 55
    elif isinstance(dtype, type):
        if dtype in [
                np.bool, np.float16, np.float32, np.float64, np.int8, np.int16,
                np.int32, np.int64, np.uint8
        ]:
            return dtype.__name__
P
pkpk 已提交
56 57 58 59 60 61 62
    else:
        if dtype in [
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
                'int32', 'int64', 'uint8', u'bool', u'float16', u'float32',
                u'float64', u'int8', u'int16', u'int32', u'int64', u'uint8'
        ]:
            # this code is a little bit dangerous, since error could happen
63
            # when casting no-ascii code to str in python2.
P
pkpk 已提交
64 65 66 67 68
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

69
    raise TypeError(
70
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
71
        "int32, int64, uint8], but received %s" % dtype)
S
sneaxiy 已提交
72 73


74 75 76 77 78
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
79
    check_type(input, input_name, Variable, op_name, extra_message)
80 81 82 83
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
84 85 86 87 88 89 90 91 92
    # NOTE [ Why skip dynamic graph check ]:
    # 1. If the input type / dtype of a layer is wrong, it will be reported
    # directly on that line. User can easily print the relevant information
    # on which line. It is easier to debug, so there is no need to check
    # in dynamic graph mode.
    # 2. Performance considerations. Because these checks are executed at
    # each step in dynamic graph mode, it will bring a heavy performance burden.
    if in_dygraph_mode():
        return
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

    from .dygraph.dygraph_to_static.program_translator import in_declarative_mode
    # NOTE: `in_declarative_mode` is used to determined whether this op is called under
    # @declarative in transformation from dygrah to static layer. We add VarBase in
    # expected_type to skip checking because varBase may be created and used in unusual way.
    # Need a better design to be fix this.
    if in_declarative_mode():
        if not isinstance(expected_type, tuple):
            expected_type = (expected_type, )
        expected_type += (core.VarBase, )
    elif isinstance(input, core.VarBase):
        raise TypeError(
            "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
            "Because received '{}' in {} is a imperative Variable.".format(
                input_name, op_name))

109 110 111 112 113 114 115 116 117 118 119
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
120 121 122
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
123 124 125 126 127 128 129 130 131 132 133
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


Y
Yu Yang 已提交
134 135 136 137 138
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
139 140 141 142 143 144 145
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
146 147
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
148

S
sneaxiy 已提交
149
    def _reset(self):
Y
Yu Yang 已提交
150
        self.data = []
S
sneaxiy 已提交
151
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
152 153 154 155 156 157 158 159

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
160
            lod[0].append(len(data))
Y
Yu Yang 已提交
161
            for each_data in data:
K
Kexin Zhao 已提交
162
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
163

S
sneaxiy 已提交
164
    def _check_shape(self, shape):
S
sneaxiy 已提交
165 166 167 168 169 170
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
171
    def done(self):
172
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
173 174
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
175 176 177 178 179 180
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
181 182 183
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
184
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
185
        self._reset()
Y
Yu Yang 已提交
186 187 188
        return t


S
sneaxiy 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
227
class DataFeeder(object):
C
chengduoZH 已提交
228
    """
229 230
    :api_attr: Static Graph
    
C
chengduoZH 已提交
231
    DataFeeder converts the data that returned by a reader into a data
232 233 234 235 236 237 238 239 240 241 242 243 244 245
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
246 247

    Raises:
248
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
249

250
    Example:
251 252 253 254 255 256
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
257
            place = fluid.CPUPlace()
258
            def reader():
259 260
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
261 262 263 264 265
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
266 267
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
268 269 270
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
271
            
272 273
            exe = fluid.Executor(place)
            exe.run(startup_program)
274 275 276 277 278 279 280 281 282 283
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
284
            print(outs)
285

C
chengduoZH 已提交
286 287
    """

F
fengjiayi 已提交
288
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
289 290 291 292
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
293 294
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
295
        for each_var in feed_list:
296
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
297
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
298 299 300 301 302
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
303
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
304 305 306 307

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
308
        """
309 310
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
311

312 313
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
314

315 316
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
317

318
        Example:
319 320
            ..  code-block:: python

321 322 323 324 325 326
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
327 328 329
                import paddle.fluid as fluid
                
                def reader(limit=5):
330 331
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
332
                
333 334 335
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
336 337
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
338 339 340 341
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
342
                print(result['data_3'])
343

C
chengduoZH 已提交
344
        """
Y
Yu Yang 已提交
345
        converter = []
346
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
347 348 349 350 351 352 353 354 355
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
356
            assert len(each_sample) == len(converter), (
357 358
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
359 360
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
361 362
                each_converter.feed(each_slot)
        ret_dict = {}
363 364
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
365 366
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
367 368

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
369
        """
370 371
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
372
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
373

374
        Parameters:
T
tianshuo78520a 已提交
375
            iterable (list|tuple): list of user-defined python generators. The element 
376 377 378
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
379

380 381 382
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
383

384 385
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
386

387
        Example:
388 389
            ..  code-block:: python

390
                import numpy as np
391
                import paddle.fluid as fluid
392

393 394 395 396 397
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
398 399 400 401

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

402
                z = fluid.layers.elementwise_add(x, y)
403

404
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
405
                place_num = 2
406 407 408 409 410
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
411

T
tianshuo78520a 已提交
412
                # print sample feed_parallel r result
413 414 415
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
416

417 418 419
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
420

C
chengduoZH 已提交
421
        """
Y
yuyang18 已提交
422 423 424
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
425 426
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
427 428 429 430
            ]
        else:
            places = [
                core.CPUPlace()
431 432
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
433 434 435 436 437 438 439 440 441
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
442
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
443 444 445 446 447 448 449 450
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
451
            return len(_cuda_ids())
Y
yuyang18 已提交
452
        else:
C
chengduo 已提交
453
            return _cpu_num()
Y
yuyang18 已提交
454 455 456 457 458 459

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
460
        """
461 462 463 464 465
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
466
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
467 468 469 470 471 472 473 474 475 476 477
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
478
        Raises:
479
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
480

481
        Example:
482 483
            ..  code-block:: python

484
                import numpy as np
485 486
                import paddle
                import paddle.fluid as fluid
487
                import paddle.fluid.compiler as compiler
488
                
489 490 491 492
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
493

494 495
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
496
                
497 498
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
499
                
500
                # a simple network sample
501 502
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
503 504
                hidden = fluid.layers.fc(input=data, size=10)
                
505 506
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
507
                
508
                exe = fluid.Executor(places[0])
509
                exe.run(fluid.default_startup_program())
510
                compiled_prog = compiler.CompiledProgram(
511 512
                         fluid.default_main_program()).with_data_parallel(places=places)
                
513
                for i,data in enumerate(reader()):
514 515
                    # print data if you like
                    # print(i, data)
516
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
517 518
                    print(ret)

C
chengduoZH 已提交
519 520
        """

Y
yuyang18 已提交
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__