conv_op.cc 34.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_op.h"
Y
Update  
Yi Wang 已提交
16

17
#include <memory>
Y
Update  
Yi Wang 已提交
18 19 20
#include <string>
#include <vector>

21
#ifdef PADDLE_WITH_CUDA
22
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
23 24 25 26 27
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
29 30 31 32

namespace paddle {
namespace operators {

33 34
std::vector<int64_t> ConvOp::ComputeOutputShape(
    framework::InferShapeContext* ctx) const {
35 36
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "Conv");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "Conv");
C
chengduoZH 已提交
37 38 39

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
40

C
chengduoZH 已提交
41 42
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
L
liym27 已提交
43 44
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
C
chengduoZH 已提交
45
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
46
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
L
liym27 已提交
47
  const std::string data_format = ctx->Attrs().Get<std::string>("data_format");
48 49 50 51 52

  // MKL-DNN Kernels are using NCHW order of dims description
  // so we ignore data_format consideration for MKL-DNN kernel
  const bool channel_last = (this->IsMKLDNNType() == false) &&
                            (data_format == "NHWC" || data_format == "NDHWC");
C
chengduoZH 已提交
53

54 55
  PADDLE_ENFORCE_EQ(
      in_dims.size() == 4 || in_dims.size() == 5, true,
56
      platform::errors::InvalidArgument(
57 58
          "The input of Op(Conv) should be a 4-D or 5-D Tensor. But "
          "received: input's dimension is %u, input's shape is [%s].",
59
          in_dims.size(), in_dims));
60

C
chengduoZH 已提交
61 62
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
63
      platform::errors::InvalidArgument(
64 65 66 67
          "The input's dimension and filter's dimension of "
          "Op(Conv) should be equal. But received: the input's shape is [%s], "
          "the input's dimension is %d; the filter's shape is [%s],  "
          "the filter's dimension is %d.",
68
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
69 70

  int in_sub_stride_size = in_dims.size() - strides.size();
71 72 73
  PADDLE_ENFORCE_EQ(
      in_dims.size(), strides.size() + 2U,
      platform::errors::InvalidArgument(
74 75 76 77 78 79 80
          "The difference of input's dimension and Attr(strides)'s "
          "length must be euqal to 2 for Op(Conv). "
          "But received: input's dimension is %d, input's shape is [%s]; "
          "Attr(stride)'s length is %d, Attr(stride) is [%s]; "
          "difference of input's dimention and Attr(strides)'s length = %u.",
          in_dims.size(), in_dims, strides.size(),
          framework::make_ddim(strides), in_sub_stride_size));
L
liym27 已提交
81 82 83

  const auto input_channels =
      channel_last ? in_dims[in_dims.size() - 1] : in_dims[1];
F
fengjiayi 已提交
84

85 86
  PADDLE_ENFORCE_EQ(
      input_channels, filter_dims[1] * groups,
87
      platform::errors::InvalidArgument(
88 89 90 91 92
          "The number of input's channels should be equal to filter's channels "
          "* groups for Op(Conv). But received: the input's channels is %d, "
          "the input's shape is [%s]; the filter's channels is %d, the "
          "filter's shape is [%s]; the groups is %d, the data_format is %s. "
          "The error may come from wrong data_format setting.",
93 94
          input_channels, in_dims, filter_dims[1], filter_dims, groups,
          data_format));
C
chengduoZH 已提交
95
  PADDLE_ENFORCE_EQ(
Y
Yang Yu 已提交
96
      filter_dims[0] % groups, 0,
97
      platform::errors::InvalidArgument(
98 99 100 101
          "The number of output's channels (filter's first dimension) of "
          "Op(Conv) should be divided by groups. But received: "
          "the output channels is %d, the filter's shape is [%s], "
          "the groups is %d.",
102
          filter_dims[0], filter_dims, groups));
C
chengduoZH 已提交
103

L
liym27 已提交
104 105 106 107 108 109
  framework::DDim in_data_dims;
  if (channel_last) {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  }
110

111 112
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
113

L
liym27 已提交
114 115 116 117 118 119 120 121
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
  if (!channel_last) {
    output_shape.push_back(filter_dims[0]);
  }
122
  for (int i = 0; i < in_data_dims.size(); ++i) {
T
tink2123 已提交
123
    if ((!ctx->IsRuntime()) &&
L
liym27 已提交
124
        (in_data_dims[i] <= 0 || filter_dims[i + 2] <= 0)) {
T
tink2123 已提交
125 126
      output_shape.push_back(-1);
    } else {
127 128 129
      output_shape.push_back(
          ConvOutputSize(in_data_dims[i], filter_data_dims[i], dilations[i],
                         paddings[2 * i], paddings[2 * i + 1], strides[i]));
T
tink2123 已提交
130
    }
C
chengduoZH 已提交
131
  }
L
liym27 已提交
132 133 134 135
  if (channel_last) {
    output_shape.push_back(filter_dims[0]);
  }

136
  return output_shape;
C
chengduoZH 已提交
137 138
}

139 140
framework::OpKernelType ConvOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
141 142
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
143
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
144
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
145
  auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "Input");
L
liym27 已提交
146 147
  std::string data_format =
      "AnyLayout";  // todo enable data layout when it's ready
M
mozga-intel 已提交
148 149
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
150
#ifdef PADDLE_WITH_CUDA
151
  if (platform::CanCUDNNBeUsed(ctx)) {
152
    library = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
153 154
  }
#endif
155
#ifdef PADDLE_WITH_MKLDNN
156
  if (library == framework::LibraryType::kPlain &&
157
      platform::CanMKLDNNBeUsed(ctx)) {
158
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
159
    layout = framework::DataLayout::kMKLDNN;
160
    customized_type_value =
161 162
        (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
         input_data_type == framework::DataTypeTrait<uint8_t>::DataType())
163 164
            ? kConvMKLDNNINT8
            : kConvMKLDNNFP32;
165
  }
166
#endif
167

168 169 170 171
  if (input_data_type != framework::proto::VarType::INT8 &&
      input_data_type != framework::proto::VarType::UINT8) {
    auto filter_data_type = ctx.Input<Tensor>("Filter")->type();
    PADDLE_ENFORCE_EQ(input_data_type, filter_data_type,
172 173
                      platform::errors::InvalidArgument(
                          "input and filter data type should be consistent"));
174
  }
K
Kexin Zhao 已提交
175
  if (input_data_type == framework::proto::VarType::FP16) {
176
    PADDLE_ENFORCE_EQ(library, framework::LibraryType::kCUDNN,
177 178
                      platform::errors::InvalidArgument(
                          "float16 can only be used when CUDNN is used"));
K
Kexin Zhao 已提交
179 180
  }

181 182 183
  auto type = framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                      library, customized_type_value);
  return type;
184 185
}

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
framework::OpKernelType ConvOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
202 203
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
204 205 206 207 208 209 210
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
211
void Conv2DOpMaker::Make() {
212 213 214 215
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
L
liym27 已提交
216 217 218 219 220 221
  AddInput("Input",
           "(Tensor) The input tensor of convolution operator. "
           "The format of input tensor is NCHW or NHWC, where N is batch size, "
           "C is the "
           "number of channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
222
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
223
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
224 225
           "The format of the filter tensor is MCHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
226 227
           "H is the height of the filter, and W is the width of the filter. "
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
228
           "input image channels divided by the groups.");
229 230 231 232 233
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
234 235 236
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
237
           "Used with fuse_residual_connection fusion.")
238
      .AsDispensable();
Y
Yihua Xu 已提交
239 240
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator. "
L
liym27 已提交
241
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
242 243 244 245
  AddAttr<std::vector<int>>("strides",
                            "(vector<int> default:{1, 1}), the "
                            "strides(h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
246
      .SetDefault({1, 1});
C
chengduoZH 已提交
247 248
  AddAttr<std::vector<int>>("paddings",
                            "(vector<int> default:{0, 0}), the "
L
liym27 已提交
249 250
                            "paddings(pad_height_top, pad_height_bottom, "
                            "pad_width_left, pad_wifth_right)  of "
C
chengduoZH 已提交
251
                            "convolution operator.")
C
chengduoZH 已提交
252
      .SetDefault({0, 0});
L
liym27 已提交
253 254 255 256 257 258
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
259 260
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
261
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
262 263 264 265
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
266
      .SetDefault(1);
C
chengduoZH 已提交
267
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
268 269
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of "
C
chengduoZH 已提交
270
                            "convolution operator.")
C
chengduoZH 已提交
271
      .SetDefault({1, 1});
272 273 274 275
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
276 277 278
  AddAttr<bool>("fuse_relu_before_depthwise_conv",
                "(bool, default false) Only used in cuda depthwise kernel")
      .SetDefault(false);
279 280 281
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
282 283 284 285 286 287
  AddAttr<bool>("use_quantizer",
                "(bool, default false) "
                "Set to true for operators that should be quantized and use "
                "int8 kernel. "
                "Only used on CPU.")
      .SetDefault(false);
M
Michal Gallus 已提交
288 289
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
290 291 292 293 294 295
  AddAttr<bool>("fuse_brelu",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<float>("fuse_brelu_threshold",
                 "(float, default false 6.0) Only used in mkldnn kernel")
      .SetDefault(6.0f);
296 297 298 299 300 301 302 303
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
304
  AddAttr<bool>("fuse_residual_connection",
305
                "(bool, default false) Only used in mkldnn kernel. Used "
306 307
                "whenever convolution output is as an input to residual "
                "connection.")
308
      .SetDefault(false);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
  AddAttr<float>("Scale_in",
                 "Scale_in to be used for int8 input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_out",
                 "Scale_out to be used for int8 output data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<float>("Scale_in_eltwise",
                 "Scale_in_eltwise to be used for int8 eltwise input data."
                 "Only used with MKL-DNN INT8.")
      .SetDefault(1.0f);
  AddAttr<std::vector<float>>("Scale_weights",
                              "Scale_weights to be used for int8 weights data."
                              "Only used with MKL-DNN INT8.")
      .SetDefault({1.0f});
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
329 330 331 332 333 334
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
L
liym27 已提交
335
      .SetDefault("NCHW");
336 337 338 339 340 341 342 343
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. Need set use_cudnn to true."
               "workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
344
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
345 346
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
347
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
348
                "for cuDNN convolution or not, default is False.")
349
      .SetDefault(false);
L
liym27 已提交
350

C
chengduoZH 已提交
351
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
352 353
Convolution Operator.

C
chengduoZH 已提交
354
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
355
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
356
parameters is checked in the infer-shape.
L
liym27 已提交
357
Input(Input) and Output(Output) are in NCHW or NHWC format. Where N is batch
C
fix doc  
chengduoZH 已提交
358
size, C is the number of channels, H is the height of the feature, and W is
C
chengduoZH 已提交
359
the width of the feature.
360
Filters(Input) is MCHW format format. Where M is the number of output image channels, C is
C
chengduoZH 已提交
361 362 363 364
the number of input image channels, H is the height of the filter, and W
is the width of the filter.
Parameters(strides, paddings, dilations) are two elements. These two elements represent
height and width, respectively.
C
chengduoZH 已提交
365 366 367 368
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
369 370
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
C
chengduoZH 已提交
371
  Output:
C
chengduoZH 已提交
372 373 374
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
$$
L
liym27 已提交
375 376
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
C
chengduoZH 已提交
377
$$
C
chengduoZH 已提交
378
)DOC");
Q
qingqing01 已提交
379
  Apply();
C
chengduoZH 已提交
380 381
}

Y
Yu Yang 已提交
382
void Conv3DOpMaker::Make() {
383 384 385 386
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
C
chengduoZH 已提交
387 388
  AddInput(
      "Input",
C
fix doc  
chengduoZH 已提交
389
      "(Tensor) The input tensor of convolution operator. "
L
liym27 已提交
390 391
      "The format of input tensor is NCDHW or NDHWC. Where N is batch size, C "
      "is the "
C
fix doc  
chengduoZH 已提交
392 393 394
      "number of channels, D is the depth of the feature, H is the height of "
      "the feature, "
      "and W is the width of the feature.");
C
chengduoZH 已提交
395
  AddInput("Filter",
C
fix doc  
chengduoZH 已提交
396
           "(Tensor) The filter tensor of convolution operator. "
C
chengduoZH 已提交
397 398
           "The format of the filter tensor is MCDHW, where M is the number of "
           "output image channels, C is the number of input image channels, "
C
fix doc  
chengduoZH 已提交
399 400 401
           "D is the depth of the filter, H is the height of the filter, and W "
           "is the width of the filter."
           "If the groups attribute is greater than 1, C equals the number of "
C
chengduoZH 已提交
402
           "input image channels divided by the groups.");
403 404 405 406 407
  AddInput("ResidualData",
           "(Tensor) Tensor with residual data "
           "to which convolution output will be added."
           "Used with fuse_residual_connection fusion.")
      .AsDispensable();
Y
Yihua Xu 已提交
408 409
  AddOutput("Output",
            "(Tensor) The output tensor of convolution operator."
L
liym27 已提交
410
            "It has same data fromat and data type as the Input.");
C
chengduoZH 已提交
411 412 413 414
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default:{1, 1, 1}), the "
                            "strides(d_stride, h_stride, w_stride) of "
                            "convolution operator.")
C
chengduoZH 已提交
415
      .SetDefault({1, 1, 1});
L
liym27 已提交
416 417 418 419 420 421
  AddAttr<std::vector<int>>(
      "paddings",
      "(vector<int>, default:{0, 0, 0}), the "
      "paddings(pad_depth_front, pad_depth_back, pad_height_top, "
      "pad_height_bottom, pad_width_left, pad_width_right) of convolution "
      "operator.")
C
chengduoZH 已提交
422
      .SetDefault({0, 0, 0});
L
liym27 已提交
423 424 425 426 427 428
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
C
chengduoZH 已提交
429 430
  AddAttr<int>(
      "groups",
C
chengduoZH 已提交
431
      "(int default:1), the groups number of the convolution operator. "
C
fix doc  
chengduoZH 已提交
432 433 434 435
      "According to grouped convolution in Alex Krizhevsky's Deep CNN paper: "
      "when group=2, the first half of the filters is only connected to the "
      "first half of the input channels, while the second half of the filters "
      "is only connected to the second half of the input channels.")
C
chengduoZH 已提交
436
      .SetDefault(1);
C
chengduoZH 已提交
437
  AddAttr<std::vector<int>>("dilations",
C
chengduoZH 已提交
438 439
                            "(vector<int> default:{1, 1, 1}), the "
                            "dilations(d_dilation, h_dilation, w_dilation) of "
C
chengduoZH 已提交
440
                            "convolution operator.")
C
chengduoZH 已提交
441
      .SetDefault({1, 1, 1});
442 443 444 445
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
446 447 448
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
449 450
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
451 452 453 454 455 456 457 458
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
459 460 461 462 463
  AddAttr<bool>("fuse_residual_connection",
                "(bool, default false) Only used in mkldnn kernel. Used "
                "whenever convolution output is as an input to residual "
                "connection.")
      .SetDefault(false);
464 465
  AddAttr<std::string>(
      "data_format",
L
liym27 已提交
466 467 468
      "(string, default NCDHW) Only used in "
      "An optional string from: \"NDHWC\", \"NCDHW\". "
      "Defaults to \"NDHWC\". Specify the data format of the output data, "
469
      "the input will be transformed automatically. ")
L
liym27 已提交
470
      .SetDefault("NCDHW");
471 472 473
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Only used in mkldnn INT8 kernel")
      .SetDefault(false);
474 475 476 477 478 479 480
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Only used in cudnn kernel. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardware. This size should be chosen carefully.")
481
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
482 483
  AddAttr<bool>("exhaustive_search",
                "(bool, default false) cuDNN has many algorithm to calculation "
C
chengduo 已提交
484
                "convolution, whether enable exhaustive search "
翟飞跃 已提交
485
                "for cuDNN convolution or not, default is False.")
486
      .SetDefault(false);
C
chengduoZH 已提交
487
  AddComment(R"DOC(
C
fix doc  
chengduoZH 已提交
488 489
Convolution3D Operator.

C
chengduoZH 已提交
490
The convolution operation calculates the output based on the input, filter
C
chengduoZH 已提交
491
and strides, paddings, dilations, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
492
parameters is checked in the infer-shape.
L
liym27 已提交
493
Input(Input) and output(Output) are in NCDHW or NDHWC format, where N is batch
C
fix doc  
chengduoZH 已提交
494
size, C is the number of channels,D is the depth of the feature, H is the height of
C
chengduoZH 已提交
495 496 497 498 499 500
the feature, and W is the width of the feature.
Filters(Input) is MCDHW format, where M is the number of output image channels,
C is the number of input image channels, D is the depth of the filter,
H is the height of the filter, and W is the width of the filter.
Parameters(strides, paddings, dilations) are three elements. These three elements
represent depth, height and width, respectively.
C
fix doc  
chengduoZH 已提交
501 502 503 504
The input(X) size and output(Out) size may be different.

Example:
  Input:
C
chengduoZH 已提交
505 506
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{out}, C_{in}, D_f, H_f, W_f)$
C
fix doc  
chengduoZH 已提交
507
  Output:
C
chengduoZH 已提交
508 509 510
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
L
liym27 已提交
511 512 513
       D_{out}= \frac{(D_{in} + pad_depth_front + pad_depth_back - (dilations[0] * (D_f - 1) + 1))}{ strides[0]}+ 1 \\
       H_{out}= \frac{(H_{in} + pad_height_top + pad_height_bottom - (dilations[1] * (H_f - 1) + 1))}{ strides[1]}+ 1 \\
       W_{out}= \frac{(W_{in} + pad_width_left + pad_width_right - (dilations[2] * (W_f - 1) + 1))}{ strides[2]}+ 1
C
chengduoZH 已提交
514
  $$
C
chengduoZH 已提交
515
)DOC");
Q
qingqing01 已提交
516
  Apply();
C
chengduoZH 已提交
517 518
}

C
chengduoZH 已提交
519 520 521 522 523 524 525 526 527 528 529
void ConvOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

530 531
framework::OpKernelType ConvOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
X
Xin Pan 已提交
532 533
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
534
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
535
  // TODO(pzelazko-intel): enable MKLDNN layout when it's ready
L
liym27 已提交
536
  std::string data_format = "AnyLayout";
M
mozga-intel 已提交
537 538
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
539
#ifdef PADDLE_WITH_CUDA
540 541
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
542 543
  }
#endif
544 545 546
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
547
    const std::string data_format = ctx.Attr<std::string>("data_format");
548
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
549
    layout_ = framework::DataLayout::kMKLDNN;
X
Xin Pan 已提交
550
    customized_type_value = kConvMKLDNNFP32;
551
  }
552
#endif
553

554 555 556
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
557
  return type;
558 559
}

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
framework::OpKernelType ConvOpGrad::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if (((var_name == "Input") ||
       (var_name == framework::GradVarName("Output"))) &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), dl);
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

H
hong 已提交
586 587
template <typename T>
class Conv2DGradMaker : public framework::SingleGradOpMaker<T> {
588
 public:
H
hong 已提交
589
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
590

591
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
592
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
593 594 595 596
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
597

H
hong 已提交
598 599 600 601
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
602
  }
S
sneaxiy 已提交
603 604
};

H
hong 已提交
605 606
template <typename T>
class Conv3DGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
607
 public:
H
hong 已提交
608
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
609

610
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
611
    op->SetType(this->ForwardOpType() + "_grad");
H
hong 已提交
612 613 614
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
S
sneaxiy 已提交
615

H
hong 已提交
616 617
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
S
sneaxiy 已提交
618

H
hong 已提交
619 620
    if (this->HasInput("ResidualData")) {
      op->SetInput("ResidualData", this->Input("ResidualData"));
S
sneaxiy 已提交
621 622
    }

H
hong 已提交
623
    op->SetAttrMap(this->Attrs());
624 625 626
  }
};

Q
qingqing01 已提交
627 628 629 630
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
631 632
template <typename T>
class Conv2DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
Q
qingqing01 已提交
633
 public:
H
hong 已提交
634
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
Q
qingqing01 已提交
635

636
  void Apply(GradOpPtr<T> op) const override {
Q
qingqing01 已提交
637 638
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
639 640 641 642 643 644
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
Q
qingqing01 已提交
645 646 647 648

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
H
hong 已提交
649 650
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
651

L
lvmengsi 已提交
652
    op->SetOutput("DDOutput",
H
hong 已提交
653
                  ddx.empty()
654
                      ? this->EmptyInputGrad()
H
hong 已提交
655
                      : this->InputGrad(framework::GradVarName("Output")));
656 657 658 659
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
660

H
hong 已提交
661
    op->SetAttrMap(this->Attrs());
Q
qingqing01 已提交
662 663 664
  }
};

L
lvmengsi 已提交
665 666 667 668
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
H
hong 已提交
669 670
template <typename T>
class Conv3DDoubleGradMaker : public framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
671
 public:
H
hong 已提交
672
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
673

674
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
675 676
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
H
hong 已提交
677 678 679 680 681 682
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));
L
lvmengsi 已提交
683

H
hong 已提交
684 685
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));
L
lvmengsi 已提交
686

L
lvmengsi 已提交
687
    op->SetOutput("DDOutput",
H
hong 已提交
688
                  ddx.empty()
689
                      ? this->EmptyInputGrad()
H
hong 已提交
690
                      : this->InputGrad(framework::GradVarName("Output")));
691 692 693 694
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));
L
lvmengsi 已提交
695

H
hong 已提交
696
    op->SetAttrMap(this->Attrs());
L
lvmengsi 已提交
697 698 699
  }
};

Q
qingqing01 已提交
700 701 702 703 704
void ConvOpDoubleGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

L
lvmengsi 已提交
705 706
  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
Q
qingqing01 已提交
707 708
    ctx->SetOutputDim("DDOutput", do_dims);
  }
709
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
Q
qingqing01 已提交
710 711
    ctx->SetOutputDim("DFilter", w_dims);
  }
712
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
Q
qingqing01 已提交
713 714 715 716 717 718 719 720 721
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  int customized_type_value =
      framework::OpKernelType::kDefaultCustomizedTypeValue;
  framework::LibraryType library_{framework::LibraryType::kPlain};
L
liym27 已提交
722
  std::string data_format = "AnyLayout";
Q
qingqing01 已提交
723 724 725 726 727
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

#ifdef PADDLE_WITH_CUDA
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
L
lvmengsi 已提交
728
  }
Q
qingqing01 已提交
729
#endif
730 731 732
  auto type = framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_, customized_type_value);
Q
qingqing01 已提交
733 734 735
  return type;
}

C
chengduoZH 已提交
736 737 738 739
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
740
REGISTER_OPERATOR(conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
741 742 743 744 745 746
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_grad, ops::ConvOpGrad,
                  ops::Conv2DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DDoubleGradMaker<paddle::imperative::OpBase>);
Q
qingqing01 已提交
747
REGISTER_OPERATOR(conv2d_grad_grad, ops::ConvOpDoubleGrad);
748 749

// depthwise convolution op
Y
Yang Yang 已提交
750
REGISTER_OPERATOR(depthwise_conv2d, ops::ConvOp, ops::Conv2DOpMaker,
H
hong 已提交
751 752 753
                  ops::ConvOpInferVarType,
                  ops::Conv2DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv2DGradMaker<paddle::imperative::OpBase>);
754
REGISTER_OPERATOR(depthwise_conv2d_grad, ops::ConvOpGrad);
C
chengduo 已提交
755

Y
Yang Yang 已提交
756
REGISTER_OPERATOR(conv3d, ops::ConvOp, ops::Conv3DOpMaker,
H
hong 已提交
757 758 759 760 761 762
                  ops::ConvOpInferVarType,
                  ops::Conv3DGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv3d_grad, ops::ConvOpGrad,
                  ops::Conv3DDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Conv3DDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
763
REGISTER_OPERATOR(conv3d_grad_grad, ops::ConvOpDoubleGrad);
C
chengduoZH 已提交
764

765 766
// depthwise conv kernel
// TODO(xingzhaolong): neon kernel for mobile
Z
zlx 已提交
767
REGISTER_OP_CPU_KERNEL(
768
    depthwise_conv2d,
X
xzl 已提交
769 770 771 772
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);

REGISTER_OP_CPU_KERNEL(
773
    depthwise_conv2d_grad,
X
xzl 已提交
774 775
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
Z
zlx 已提交
776

C
chengduoZH 已提交
777
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
778 779 780 781 782 783
    conv2d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv2d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
784 785 786 787
REGISTER_OP_CPU_KERNEL(
    conv2d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
788 789

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
790 791 792 793 794 795
    conv3d, ops::GemmConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    conv3d_grad,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvGradKernel<paddle::platform::CPUDeviceContext, double>);
L
lvmengsi 已提交
796 797 798 799
REGISTER_OP_CPU_KERNEL(
    conv3d_grad_grad,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);