grad_node_info.cc 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/grad_node_info.h"
16 17

#include "glog/logging.h"
18
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
19
#include "paddle/fluid/eager/autograd_meta.h"
20 21 22 23
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type_transform.h"
24 25 26
#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
27 28 29
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
30 31

/**
32
 * Implementation of GradNodeBase, Edge and GradTensorHolder.
33
 **/
34 35
namespace egr {

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
static void CheckTensor(const paddle::experimental::Tensor& pre,
                        const paddle::experimental::Tensor& post) {
  if (!pre.initialized() && post.initialized()) {
    PADDLE_THROW(paddle::platform::errors::PermissionDenied(
        "The tensor in before and after hook are not consistent"));
  }
  if (pre.initialized() && post.initialized()) {
    VLOG(4) << paddle::framework::DataType2String(pre.dtype()) << " "
            << paddle::framework::DataType2String(post.dtype());
    PADDLE_ENFORCE_EQ(
        pre.dtype(), post.dtype(),
        paddle::platform::errors::PermissionDenied(
            "The dtype of tensor before(%s) and after(%s) hook are not "
            "consistent",
            paddle::framework::DataType2String(pre.dtype()),
            paddle::framework::DataType2String(post.dtype())));
    PADDLE_ENFORCE_EQ(
        pre.place(), post.place(),
        paddle::platform::errors::PermissionDenied(
            "The place of tensor before(%s) and after(%s) "
            "hook are not consistent",
            pre.place().DebugString(), post.place().DebugString()));
  }
}

61
GradNodeBase::GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num) {
J
Jiabin Yang 已提交
62
  VLOG(6) << "Construct GradNodeBase";
63 64 65 66
  bwd_in_meta_.resize(bwd_in_slot_num);
  bwd_out_meta_.resize(bwd_out_slot_num);
}

67 68 69
const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::InputMeta() const {
  return bwd_in_meta_;
70 71
}

72 73 74
const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::OutputMeta() const {
  return bwd_out_meta_;
75 76
}

77 78
paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::MutableOutputMeta() {
79 80 81
  return bwd_out_meta_;
}

82
void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
83
                                 size_t slot_rank) {
84
  VLOG(6) << "Set GradSlotMeta for Grad Inputs";
85
  auto* fwd_out_meta = egr::EagerUtils::nullable_autograd_meta(fwd_out);
86 87 88 89 90 91
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
92 93 94 95 96 97
  auto& metas = bwd_in_meta_.at(slot_rank);
  if (metas.size() == 0) {
    metas.resize(1);
  }

  auto& meta = metas[0];
98 99 100
  if (fwd_out_meta && fwd_out_meta->StopGradient()) {
    meta.SetStopGradient(fwd_out_meta->StopGradient());
  }
101

102
  if (!fwd_out.initialized()) {
103 104 105 106 107
    VLOG(6)
        << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
    return;
  }

108
  phi::DenseTensor* dense_tensor = nullptr;
109 110 111
  // Record TensorMeta
  if (phi::DenseTensor::classof(fwd_out.impl().get())) {
    // Only Copy Meta
112 113 114 115 116
    dense_tensor = static_cast<phi::DenseTensor*>(fwd_out.impl().get());
  } else if (phi::SparseCooTensor::classof(fwd_out.impl().get())) {
    phi::SparseCooTensor* coo_tensor =
        static_cast<phi::SparseCooTensor*>(fwd_out.impl().get());
    dense_tensor = coo_tensor->mutable_non_zero_elements();
117 118 119
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
120
  }
121 122 123 124 125 126 127
  PADDLE_ENFORCE_NE(
      dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
      paddle::platform::errors::Fatal(
          "Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
          "which is illegal."));

  meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
128
  meta.SetPlace(fwd_out.place());
129

130 131
  if (dense_tensor->type() == paddle::experimental::DataType::COMPLEX64 ||
      dense_tensor->type() == paddle::experimental::DataType::COMPLEX128) {
132 133
    need_complex_to_real_ = true;
  }
134 135
}

136 137 138
void GradNodeBase::SetGradInMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_out,
    size_t slot_rank) {
139
  VLOG(6) << "Set GradSlotMeta for Grad Inputs";
140
  size_t slot_size = fwd_out.size();
141 142 143 144 145 146
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
147
  auto& metas = bwd_in_meta_.at(slot_rank);
148
  // Init stop gradient vector before use to avoid push back
149 150 151 152 153 154 155 156 157 158 159 160 161 162
  if (metas.size() < slot_size) {
    VLOG(7) << "Init bwd_in_meta_ with slot rank: " << slot_rank;
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    auto& meta = metas[i];
    const auto& fwd_out_tensor = fwd_out[i];
    auto* fwd_out_meta =
        egr::EagerUtils::nullable_autograd_meta(fwd_out_tensor);
    PADDLE_ENFORCE_NOT_NULL(fwd_out_meta,
                            paddle::platform::errors::PreconditionNotMet(
                                "Bwd_in_meta should only be called while "
                                "autograd_meta is not null. If you got this "
                                "error, it indicates bugs in framework."));
163
    if (fwd_out_meta && fwd_out_meta->StopGradient()) {
164 165 166 167 168
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(fwd_out_meta->StopGradient());
    }

169
    if (!fwd_out_tensor.initialized()) {
170 171 172 173 174
      VLOG(6)
          << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
      return;
    }

175 176 177 178 179 180 181 182 183 184 185 186
    // Record TensorMeta
    if (phi::DenseTensor::classof(fwd_out_tensor.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_out_tensor.impl().get());

      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
187
      meta.SetPlace(fwd_out_tensor.place());
188

189 190
      if (dense_tensor->type() == paddle::experimental::DataType::COMPLEX64 ||
          dense_tensor->type() == paddle::experimental::DataType::COMPLEX128) {
191 192 193 194 195 196 197
        need_complex_to_real_ = true;
      }
    } else {
      VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta "
                 "with non-DenseTensor argument.";
    }
  }
198 199
}

200
void GradNodeBase::SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
201
                                  size_t slot_rank) {
202
  auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in);
203
  PADDLE_ENFORCE_LE(
204
      (slot_rank + 1), bwd_out_meta_.size(),
205 206 207 208
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
209
  auto& metas = bwd_out_meta_.at(slot_rank);
210
  // Init stop gradient vector before use to avoid push back
211 212 213 214
  if (metas.size() == 0) {
    metas.resize(1);
  }
  auto& meta = metas[0];
215
  // Set Stop_gradient
216 217
  if (fwd_in_meta) {
    meta.SetStopGradient(fwd_in_meta->StopGradient());
218 219
  } else {
    meta.SetStopGradient(true);
220
  }
221 222 223 224 225 226 227 228 229 230 231
  // Set Adj Edges
  if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
    auto node = fwd_in_meta->GetMutableGradNode();
    if (!node || !node.get()) {
      fwd_in_meta->SetGradNode(
          std::make_shared<egr::GradNodeAccumulation>(fwd_in_meta));
    }
    VLOG(6) << "Add Edges for slot: " << slot_rank << ", the Edge is from "
            << this->name() << " (addr: " << this << ") "
            << " to " << fwd_in_meta->GetMutableGradNode()->name()
            << " (addr: " << fwd_in_meta->GetMutableGradNode().get() << ")";
232

233 234
    meta.SetEdge(fwd_in_meta->GetMutableGradNode(), fwd_in_meta->OutRankInfo());
  }
235 236 237 238 239 240 241 242 243 244 245 246
  // Record TensorMeta
  if (fwd_in.impl() && fwd_in.impl().get()) {
    if (phi::DenseTensor::classof(fwd_in.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_in.impl().get());
      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
247
      meta.SetPlace(fwd_in.place());
248
    }
249 250 251
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
252 253 254
  }
}

255 256 257
void GradNodeBase::SetGradOutMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_in, size_t slot_rank) {
  size_t slot_size = fwd_in.size();
258
  PADDLE_ENFORCE_LE(
259
      slot_rank, (bwd_out_meta_.size() - 1),
260 261 262 263
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
264
  auto& metas = bwd_out_meta_.at(slot_rank);
265
  // Init stop gradient vector before use to avoid push back
266 267 268 269 270 271 272
  if (metas.size() < slot_size) {
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    const auto& fwd_in_tensor = fwd_in[i];
    auto& meta = metas[i];
    auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in_tensor);
273
    // Set Stop_gradient
274 275 276
    if (fwd_in_meta) {
      meta.SetStopGradient(fwd_in_meta->StopGradient());
    }
277 278 279 280 281 282 283 284 285 286 287
    // Set Adj Edges
    if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
      auto node = fwd_in_meta->GetMutableGradNode();
      if (!node || !node.get()) {
        fwd_in_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(fwd_in_meta));
      }
      VLOG(6) << "Add Edges for slot: " << slot_rank << ", the Edge is from "
              << this->name() << " (addr: " << this << ") "
              << " to " << fwd_in_meta->GetMutableGradNode()->name()
              << " (addr: " << fwd_in_meta->GetMutableGradNode().get() << ")";
288

289 290 291
      meta.SetEdge(fwd_in_meta->GetMutableGradNode(),
                   fwd_in_meta->OutRankInfo());
    }
292 293 294 295 296 297
    // Record TensorMeta
    if (fwd_in_tensor.impl() && fwd_in_tensor.impl().get()) {
      if (phi::DenseTensor::classof(fwd_in_tensor.impl().get())) {
        // Only Copy Meta
        phi::DenseTensor* dense_tensor =
            static_cast<phi::DenseTensor*>(fwd_in_tensor.impl().get());
298
        PADDLE_ENFORCE_NE(dense_tensor->dtype(), phi::DataType::UNDEFINED,
299
                          paddle::platform::errors::Fatal(
300 301
                              "Attempting to copy DenseTensorMeta "
                              "with phi::DataType::UNDEFINED,"
302 303
                              "which is illegal."));
        meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
304
        meta.SetPlace(fwd_in_tensor.place());
305 306
      }
    } else {
307 308 309
      VLOG(6)
          << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
             "non-DenseTensor argument.";
310
    }
311
  }
312 313 314 315 316 317 318 319 320
}

void GradNodeBase::SetDefaultGradInOutMeta() {
  PADDLE_ENFORCE((bwd_out_meta_.size() == 1) && (bwd_in_meta_.size() == 1),
                 paddle::platform::errors::PreconditionNotMet(
                     "We can only support 1 input and 1 output in default grad "
                     "meta setter, other size of inputs and outputs should "
                     "create with Setter and Getters"));
  // Default stop_gradient is false and slot id is 0, slot size is 1;
321 322
  bwd_out_meta_[0].resize(1);
  bwd_in_meta_[0].resize(1);
323 324
}

325 326 327 328 329
int64_t GradNodeBase::RegisterGradientHook(
    size_t slot_id, size_t rank, std::shared_ptr<egr::TensorHook>&& hook) {
  gradient_hooks_.emplace(next_hook_id_,
                          std::make_tuple(slot_id, rank, std::move(hook)));
  return next_hook_id_++;
330 331
}

332 333
paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                     kSlotSmallVectorSize>
334
GradNodeBase::ApplyGradientHooks(
335 336 337 338 339
    const paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                               kSlotSmallVectorSize>& tensors) {
  paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                       kSlotSmallVectorSize>
      outs(tensors.size());
340 341 342 343 344
  for (auto& hook_pair : gradient_hooks_) {
    size_t slot_id = std::get<0>(hook_pair.second);
    size_t rank = std::get<1>(hook_pair.second);

    auto hook = std::get<2>(hook_pair.second);
345 346 347 348 349 350 351 352 353 354 355 356

    PADDLE_ENFORCE(slot_id < tensors.size(),
                   paddle::platform::errors::Fatal(
                       "Slot_id from registered hook should be smaller than "
                       "slot size of grad_tensors"));

    PADDLE_ENFORCE(rank < tensors[slot_id].size(),
                   paddle::platform::errors::Fatal(
                       "rank of slot %d from registered hook should be smaller "
                       "than rank size of grad_tensors",
                       slot_id));

357
    std::vector<paddle::experimental::Tensor>& slot_out = outs[slot_id];
358
    slot_out.resize(tensors[slot_id].size());
359
    paddle::experimental::Tensor& out = slot_out[rank];
360
    if (!out.defined() || !out.initialized()) {
361
      out = (*hook)(tensors[slot_id][rank]);
362
    } else {
363
      // If more than one hook is registered, the input to the next hook func
364
      // should be the output of the previous hook
365
      out = (*hook)(out);
366 367 368 369 370 371 372 373 374 375 376 377
    }
  }

  for (size_t i = 0; i < outs.size(); i++) {
    if (outs[i].empty() && (!tensors[i].empty())) {
      outs[i].resize(tensors[i].size());
    }
    // TODO(Jiabin): Optimize this if we only add hook slot by slot
    for (size_t j = 0; j < outs[i].size(); j++) {
      if (!outs[i][j].defined() || !outs[i][j].initialized()) {
        outs[i][j] = tensors[i][j];
      }
378
      CheckTensor(tensors[i][j], outs[i][j]);
379 380 381 382 383 384
    }
  }

  return outs;
}

385
void GradNodeBase::HandleComplexGradToRealGrad(
386 387
    paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                         kSlotSmallVectorSize>* out_grads) {
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
  for (size_t slot_id = 0; slot_id < out_grads->size(); slot_id++) {
    const std::vector<paddle::experimental::Tensor>& slot_out_grads =
        (*out_grads)[slot_id];
    for (size_t rank_id = 0; rank_id < slot_out_grads.size(); rank_id++) {
      const GradSlotMeta& slot_meta = bwd_out_meta_[slot_id][rank_id];

      PADDLE_ENFORCE(
          slot_meta.HasTensorMeta() > 0,
          paddle::platform::errors::Fatal(
              "We require TensorMeta in GradInputMeta() to obtain forward data "
              "types."
              "However, no TensorMeta is detected in bwd_out_meta_."));

      auto fwd_data_type = paddle::framework::TransToProtoVarType(
          slot_meta.GetTensorMeta().dtype);
      const paddle::experimental::Tensor& grad = slot_out_grads[rank_id];

      if (paddle::framework::IsComplexType(fwd_data_type)) continue;

      // Only Handle Complex To Real for DenseTensor for now
      if (phi::DenseTensor::classof(grad.impl().get())) {
        phi::DenseTensor* grad_dense_tensor =
            static_cast<phi::DenseTensor*>(grad.impl().get());

        auto curr_data_type =
            paddle::framework::TransToProtoVarType(grad_dense_tensor->type());
        if (!paddle::framework::IsComplexType(curr_data_type)) continue;

        // Convert Complex GradOut to Real
        auto out = std::make_shared<phi::DenseTensor>();
        paddle::framework::TransComplexToReal(fwd_data_type, curr_data_type,
                                              *grad_dense_tensor, out.get());

        (*out_grads)[slot_id][rank_id].set_impl(out);
      }
    }
  }
}

427
}  // namespace egr