grad_node_info.cc 14.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/grad_node_info.h"
16
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
17
#include "paddle/fluid/eager/autograd_meta.h"
18 19
#include "paddle/fluid/eager/utils.h"

20 21
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
22

23 24 25
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type_transform.h"
26
#include "paddle/fluid/framework/var_type.h"
27

28 29 30 31 32 33
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"

#include "glog/logging.h"

/**
34
 * Implementation of GradNodeBase, Edge and GradTensorHolder.
35 36 37 38
**/
namespace egr {

GradNodeBase::GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num) {
J
Jiabin Yang 已提交
39
  VLOG(6) << "Construct GradNodeBase";
40 41 42 43 44
  bwd_in_meta_.resize(bwd_in_slot_num);
  bwd_out_meta_.resize(bwd_out_slot_num);
  adj_edges_.resize(bwd_out_slot_num);
}

45 46 47 48 49 50 51
void GradNodeBase::AddEdges(std::vector<AutogradMeta*>* metas, size_t slot_id) {
  PADDLE_ENFORCE_LT(
      slot_id, adj_edges_.size(),
      paddle::platform::errors::InvalidArgument(
          "Given slot id is out of range of adj_edges outter size, "
          "adj_edges is designed to has the same size of grad "
          "inputs's slot num."));
52 53 54

  for (size_t i = 0; i < metas->size(); i++) {
    const auto& meta = (*metas)[i];
55 56 57
    // adj_edges has as same rank as fwd inputs, and record it's output rank
    // from
    // its pre-ops
58
    if (meta && !meta->StopGradient()) {
59
      auto node = meta->GetMutableGradNode();
60
      if (!node || !node.get()) {
61
        meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
62
      }
63 64 65

      adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(),
                                       meta->OutRankInfo());
J
Jiabin Yang 已提交
66 67
    } else {
      adj_edges_[slot_id].emplace_back();
68
    }
69 70 71
  }
}

72
void GradNodeBase::AddEdges(AutogradMeta* meta, size_t slot_id) {
73 74 75 76 77 78
  PADDLE_ENFORCE_LT(
      slot_id, adj_edges_.size(),
      paddle::platform::errors::InvalidArgument(
          "Given slot id is out of range of adj_edges outter size, "
          "adj_edges is designed to has the same size of grad "
          "inputs's slot num."));
79

80
  if (meta && !meta->StopGradient()) {
81
    auto node = meta->GetMutableGradNode();
82
    if (!node || !node.get()) {
83
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>(meta));
84
    }
85 86 87 88 89
    VLOG(6) << "Add Edges for slot: " << slot_id << ", the Edge is from "
            << this->name() << " to " << meta->GetMutableGradNode()->name();

    adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(),
                                     meta->OutRankInfo());
J
Jiabin Yang 已提交
90 91
  } else {
    adj_edges_[slot_id].emplace_back();
92
  }
93 94
}

95
const std::vector<std::vector<GradSlotMeta>>& GradNodeBase::InputMeta() const {
96 97 98
  return bwd_in_meta_;
}

99
const std::vector<std::vector<GradSlotMeta>>& GradNodeBase::OutputMeta() const {
100 101 102
  return bwd_out_meta_;
}

103
void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
104
                                 size_t slot_rank) {
105
  auto* fwd_out_meta = egr::EagerUtils::nullable_autograd_meta(fwd_out);
106 107 108 109 110 111
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  auto& metas = bwd_in_meta_.at(slot_rank);
  if (metas.size() == 0) {
    metas.resize(1);
  }

  auto& meta = metas[0];
  meta.SetStopGradient(fwd_out_meta->StopGradient());

  // Record TensorMeta
  if (phi::DenseTensor::classof(fwd_out.impl().get())) {
    // Only Copy Meta
    phi::DenseTensor* dense_tensor =
        static_cast<phi::DenseTensor*>(fwd_out.impl().get());

    PADDLE_ENFORCE_NE(
        dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
        paddle::platform::errors::Fatal(
            "Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
            "which is illegal."));
    meta.SetTensorMeta(dense_tensor->meta());

    if (paddle::framework::IsComplexType(
            paddle::framework::TransToProtoVarType(dense_tensor->type()))) {
      need_complex_to_real_ = true;
136
    }
137 138 139
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
140 141 142
  }
}

143 144 145 146
void GradNodeBase::SetGradInMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_out,
    size_t slot_rank) {
  size_t slot_size = fwd_out.size();
147 148 149 150 151 152
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
153
  auto& metas = bwd_in_meta_.at(slot_rank);
154
  // Init stop gradient vector before use to avoid push back
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  if (metas.size() < slot_size) {
    VLOG(7) << "Init bwd_in_meta_ with slot rank: " << slot_rank;
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    auto& meta = metas[i];
    const auto& fwd_out_tensor = fwd_out[i];
    auto* fwd_out_meta =
        egr::EagerUtils::nullable_autograd_meta(fwd_out_tensor);
    PADDLE_ENFORCE_NOT_NULL(fwd_out_meta,
                            paddle::platform::errors::PreconditionNotMet(
                                "Bwd_in_meta should only be called while "
                                "autograd_meta is not null. If you got this "
                                "error, it indicates bugs in framework."));
    if (fwd_out_meta->StopGradient()) {
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(fwd_out_meta->StopGradient());
    }

    // Record TensorMeta
    if (phi::DenseTensor::classof(fwd_out_tensor.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_out_tensor.impl().get());

      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
      if (paddle::framework::IsComplexType(
              paddle::framework::TransToProtoVarType(dense_tensor->type()))) {
        need_complex_to_real_ = true;
      }
    } else {
      VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta "
                 "with non-DenseTensor argument.";
    }
  }
196 197
}

198
void GradNodeBase::SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
199
                                  size_t slot_rank) {
200
  auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in);
201
  PADDLE_ENFORCE_LE(
202
      (slot_rank + 1), bwd_out_meta_.size(),
203 204 205 206
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
207
  auto& metas = bwd_out_meta_.at(slot_rank);
208
  // Init stop gradient vector before use to avoid push back
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
  if (metas.size() == 0) {
    metas.resize(1);
  }
  auto& meta = metas[0];
  if (fwd_in_meta) {
    meta.SetStopGradient(fwd_in_meta->StopGradient());
  } else {
    meta.SetStopGradient(true);
  }

  // Record TensorMeta
  if (fwd_in.impl() && fwd_in.impl().get()) {
    if (phi::DenseTensor::classof(fwd_in.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_in.impl().get());
      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
231
    }
232 233 234
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
235 236 237
  }
}

238 239 240
void GradNodeBase::SetGradOutMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_in, size_t slot_rank) {
  size_t slot_size = fwd_in.size();
241
  PADDLE_ENFORCE_LE(
242
      slot_rank, (bwd_out_meta_.size() - 1),
243 244 245 246
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
247
  auto& metas = bwd_out_meta_.at(slot_rank);
248
  // Init stop gradient vector before use to avoid push back
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  if (metas.size() < slot_size) {
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    const auto& fwd_in_tensor = fwd_in[i];
    auto& meta = metas[i];
    auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in_tensor);
    if (fwd_in_meta) {
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(fwd_in_meta->StopGradient());
    }

    // Record TensorMeta
    if (fwd_in_tensor.impl() && fwd_in_tensor.impl().get()) {
      if (phi::DenseTensor::classof(fwd_in_tensor.impl().get())) {
        // Only Copy Meta
        phi::DenseTensor* dense_tensor =
            static_cast<phi::DenseTensor*>(fwd_in_tensor.impl().get());

        PADDLE_ENFORCE_NE(dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
                          paddle::platform::errors::Fatal(
                              "Attempting to copy DenseTensorMeta with "
                              "phi::DataType::UNDEFINED,"
                              "which is illegal."));
        meta.SetTensorMeta(dense_tensor->meta());
      }
    } else {
      VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta "
                 "with non-DenseTensor argument.";
    }
280
  }
281 282 283 284 285 286 287 288 289
}

void GradNodeBase::SetDefaultGradInOutMeta() {
  PADDLE_ENFORCE((bwd_out_meta_.size() == 1) && (bwd_in_meta_.size() == 1),
                 paddle::platform::errors::PreconditionNotMet(
                     "We can only support 1 input and 1 output in default grad "
                     "meta setter, other size of inputs and outputs should "
                     "create with Setter and Getters"));
  // Default stop_gradient is false and slot id is 0, slot size is 1;
290 291
  bwd_out_meta_[0].resize(1);
  bwd_in_meta_[0].resize(1);
292 293
}

294 295 296 297 298
int64_t GradNodeBase::RegisterGradientHook(
    size_t slot_id, size_t rank, std::shared_ptr<egr::TensorHook>&& hook) {
  gradient_hooks_.emplace(next_hook_id_,
                          std::make_tuple(slot_id, rank, std::move(hook)));
  return next_hook_id_++;
299 300
}

301 302 303 304
const std::vector<std::vector<Edge>>& GradNodeBase::GetEdges() const {
  return adj_edges_;
}

305 306 307 308
std::vector<std::vector<paddle::experimental::Tensor>>
GradNodeBase::ApplyGradientHooks(
    const std::vector<std::vector<paddle::experimental::Tensor>>& tensors) {
  std::vector<std::vector<paddle::experimental::Tensor>> outs(tensors.size());
309 310 311 312 313
  for (auto& hook_pair : gradient_hooks_) {
    size_t slot_id = std::get<0>(hook_pair.second);
    size_t rank = std::get<1>(hook_pair.second);

    auto hook = std::get<2>(hook_pair.second);
314 315 316 317 318 319 320 321 322 323 324 325

    PADDLE_ENFORCE(slot_id < tensors.size(),
                   paddle::platform::errors::Fatal(
                       "Slot_id from registered hook should be smaller than "
                       "slot size of grad_tensors"));

    PADDLE_ENFORCE(rank < tensors[slot_id].size(),
                   paddle::platform::errors::Fatal(
                       "rank of slot %d from registered hook should be smaller "
                       "than rank size of grad_tensors",
                       slot_id));

326
    std::vector<paddle::experimental::Tensor>& slot_out = outs[slot_id];
327
    slot_out.resize(tensors[slot_id].size());
328
    paddle::experimental::Tensor& out = slot_out[rank];
329
    if (!out.defined() || !out.initialized()) {
330
      out = (*hook)(tensors[slot_id][rank]);
331
    } else {
332
      // If more than one hook is registered, the input to the next hook func
333
      // should be the output of the previous hook
334
      out = (*hook)(out);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    }
  }

  for (size_t i = 0; i < outs.size(); i++) {
    if (outs[i].empty() && (!tensors[i].empty())) {
      outs[i].resize(tensors[i].size());
    }
    // TODO(Jiabin): Optimize this if we only add hook slot by slot
    for (size_t j = 0; j < outs[i].size(); j++) {
      if (!outs[i][j].defined() || !outs[i][j].initialized()) {
        outs[i][j] = tensors[i][j];
      }
    }
  }

  return outs;
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
void GradNodeBase::HandleComplexGradToRealGrad(
    std::vector<std::vector<paddle::experimental::Tensor>>* out_grads) {
  for (size_t slot_id = 0; slot_id < out_grads->size(); slot_id++) {
    const std::vector<paddle::experimental::Tensor>& slot_out_grads =
        (*out_grads)[slot_id];
    for (size_t rank_id = 0; rank_id < slot_out_grads.size(); rank_id++) {
      const GradSlotMeta& slot_meta = bwd_out_meta_[slot_id][rank_id];

      PADDLE_ENFORCE(
          slot_meta.HasTensorMeta() > 0,
          paddle::platform::errors::Fatal(
              "We require TensorMeta in GradInputMeta() to obtain forward data "
              "types."
              "However, no TensorMeta is detected in bwd_out_meta_."));

      auto fwd_data_type = paddle::framework::TransToProtoVarType(
          slot_meta.GetTensorMeta().dtype);
      const paddle::experimental::Tensor& grad = slot_out_grads[rank_id];

      if (paddle::framework::IsComplexType(fwd_data_type)) continue;

      // Only Handle Complex To Real for DenseTensor for now
      if (phi::DenseTensor::classof(grad.impl().get())) {
        phi::DenseTensor* grad_dense_tensor =
            static_cast<phi::DenseTensor*>(grad.impl().get());

        auto curr_data_type =
            paddle::framework::TransToProtoVarType(grad_dense_tensor->type());
        if (!paddle::framework::IsComplexType(curr_data_type)) continue;

        // Convert Complex GradOut to Real
        auto out = std::make_shared<phi::DenseTensor>();
        paddle::framework::TransComplexToReal(fwd_data_type, curr_data_type,
                                              *grad_dense_tensor, out.get());

        (*out_grads)[slot_id][rank_id].set_impl(out);
      }
    }
  }
}

394
}  // namespace egr