grad_node_info.cc 16.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/grad_node_info.h"
16
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
17
#include "paddle/fluid/eager/autograd_meta.h"
18 19
#include "paddle/fluid/eager/utils.h"

20 21
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
22
#include "paddle/phi/core/sparse_coo_tensor.h"
23

24 25 26
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type_transform.h"
27
#include "paddle/fluid/framework/var_type.h"
28

29 30 31 32 33 34
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"

#include "glog/logging.h"

/**
35
 * Implementation of GradNodeBase, Edge and GradTensorHolder.
36 37 38
**/
namespace egr {

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
static void CheckTensor(const paddle::experimental::Tensor& pre,
                        const paddle::experimental::Tensor& post) {
  if (!pre.initialized() && post.initialized()) {
    PADDLE_THROW(paddle::platform::errors::PermissionDenied(
        "The tensor in before and after hook are not consistent"));
  }
  if (pre.initialized() && post.initialized()) {
    VLOG(4) << paddle::framework::DataType2String(pre.dtype()) << " "
            << paddle::framework::DataType2String(post.dtype());
    PADDLE_ENFORCE_EQ(
        pre.dtype(), post.dtype(),
        paddle::platform::errors::PermissionDenied(
            "The dtype of tensor before(%s) and after(%s) hook are not "
            "consistent",
            paddle::framework::DataType2String(pre.dtype()),
            paddle::framework::DataType2String(post.dtype())));
    PADDLE_ENFORCE_EQ(
        pre.place(), post.place(),
        paddle::platform::errors::PermissionDenied(
            "The place of tensor before(%s) and after(%s) "
            "hook are not consistent",
            pre.place().DebugString(), post.place().DebugString()));
  }
}

64
GradNodeBase::GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num) {
J
Jiabin Yang 已提交
65
  VLOG(6) << "Construct GradNodeBase";
66 67 68 69
  bwd_in_meta_.resize(bwd_in_slot_num);
  bwd_out_meta_.resize(bwd_out_slot_num);
}

70 71 72
const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::InputMeta() const {
  return bwd_in_meta_;
73 74
}

75 76 77
const paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::OutputMeta() const {
  return bwd_out_meta_;
78 79
}

80 81
paddle::small_vector<std::vector<GradSlotMeta>, kSlotSmallVectorSize>&
GradNodeBase::MutableOutputMeta() {
82 83 84
  return bwd_out_meta_;
}

85
void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
86
                                 size_t slot_rank) {
87
  VLOG(6) << "Set GradSlotMeta for Grad Inputs";
88
  auto* fwd_out_meta = egr::EagerUtils::nullable_autograd_meta(fwd_out);
89 90 91 92 93 94
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
95 96 97 98 99 100
  auto& metas = bwd_in_meta_.at(slot_rank);
  if (metas.size() == 0) {
    metas.resize(1);
  }

  auto& meta = metas[0];
101 102 103
  if (fwd_out_meta && fwd_out_meta->StopGradient()) {
    meta.SetStopGradient(fwd_out_meta->StopGradient());
  }
104

105
  if (!fwd_out.initialized()) {
106 107 108 109 110
    VLOG(6)
        << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
    return;
  }

111
  phi::DenseTensor* dense_tensor = nullptr;
112 113 114
  // Record TensorMeta
  if (phi::DenseTensor::classof(fwd_out.impl().get())) {
    // Only Copy Meta
115 116 117 118 119
    dense_tensor = static_cast<phi::DenseTensor*>(fwd_out.impl().get());
  } else if (phi::SparseCooTensor::classof(fwd_out.impl().get())) {
    phi::SparseCooTensor* coo_tensor =
        static_cast<phi::SparseCooTensor*>(fwd_out.impl().get());
    dense_tensor = coo_tensor->mutable_non_zero_elements();
120 121 122
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
123
  }
124 125 126 127 128 129 130
  PADDLE_ENFORCE_NE(
      dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
      paddle::platform::errors::Fatal(
          "Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
          "which is illegal."));

  meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
131
  meta.SetPlace(fwd_out.place());
132

133 134
  if (dense_tensor->type() == paddle::experimental::DataType::COMPLEX64 ||
      dense_tensor->type() == paddle::experimental::DataType::COMPLEX128) {
135 136
    need_complex_to_real_ = true;
  }
137 138
}

139 140 141
void GradNodeBase::SetGradInMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_out,
    size_t slot_rank) {
142
  VLOG(6) << "Set GradSlotMeta for Grad Inputs";
143
  size_t slot_size = fwd_out.size();
144 145 146 147 148 149
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
150
  auto& metas = bwd_in_meta_.at(slot_rank);
151
  // Init stop gradient vector before use to avoid push back
152 153 154 155 156 157 158 159 160 161 162 163 164 165
  if (metas.size() < slot_size) {
    VLOG(7) << "Init bwd_in_meta_ with slot rank: " << slot_rank;
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    auto& meta = metas[i];
    const auto& fwd_out_tensor = fwd_out[i];
    auto* fwd_out_meta =
        egr::EagerUtils::nullable_autograd_meta(fwd_out_tensor);
    PADDLE_ENFORCE_NOT_NULL(fwd_out_meta,
                            paddle::platform::errors::PreconditionNotMet(
                                "Bwd_in_meta should only be called while "
                                "autograd_meta is not null. If you got this "
                                "error, it indicates bugs in framework."));
166
    if (fwd_out_meta && fwd_out_meta->StopGradient()) {
167 168 169 170 171
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(fwd_out_meta->StopGradient());
    }

172
    if (!fwd_out_tensor.initialized()) {
173 174 175 176 177
      VLOG(6)
          << "Skip Configuring GradSlotMeta for uninitialized GradInput Tensor";
      return;
    }

178 179 180 181 182 183 184 185 186 187 188 189
    // Record TensorMeta
    if (phi::DenseTensor::classof(fwd_out_tensor.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_out_tensor.impl().get());

      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
190
      meta.SetPlace(fwd_out_tensor.place());
191

192 193
      if (dense_tensor->type() == paddle::experimental::DataType::COMPLEX64 ||
          dense_tensor->type() == paddle::experimental::DataType::COMPLEX128) {
194 195 196 197 198 199 200
        need_complex_to_real_ = true;
      }
    } else {
      VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta "
                 "with non-DenseTensor argument.";
    }
  }
201 202
}

203
void GradNodeBase::SetGradOutMeta(const paddle::experimental::Tensor& fwd_in,
204
                                  size_t slot_rank) {
205
  auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in);
206
  PADDLE_ENFORCE_LE(
207
      (slot_rank + 1), bwd_out_meta_.size(),
208 209 210 211
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
212
  auto& metas = bwd_out_meta_.at(slot_rank);
213
  // Init stop gradient vector before use to avoid push back
214 215 216 217
  if (metas.size() == 0) {
    metas.resize(1);
  }
  auto& meta = metas[0];
218
  // Set Stop_gradient
219 220
  if (fwd_in_meta) {
    meta.SetStopGradient(fwd_in_meta->StopGradient());
221 222
  } else {
    meta.SetStopGradient(true);
223
  }
224 225 226 227 228 229 230 231 232 233 234
  // Set Adj Edges
  if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
    auto node = fwd_in_meta->GetMutableGradNode();
    if (!node || !node.get()) {
      fwd_in_meta->SetGradNode(
          std::make_shared<egr::GradNodeAccumulation>(fwd_in_meta));
    }
    VLOG(6) << "Add Edges for slot: " << slot_rank << ", the Edge is from "
            << this->name() << " (addr: " << this << ") "
            << " to " << fwd_in_meta->GetMutableGradNode()->name()
            << " (addr: " << fwd_in_meta->GetMutableGradNode().get() << ")";
235

236 237
    meta.SetEdge(fwd_in_meta->GetMutableGradNode(), fwd_in_meta->OutRankInfo());
  }
238 239 240 241 242 243 244 245 246 247 248 249
  // Record TensorMeta
  if (fwd_in.impl() && fwd_in.impl().get()) {
    if (phi::DenseTensor::classof(fwd_in.impl().get())) {
      // Only Copy Meta
      phi::DenseTensor* dense_tensor =
          static_cast<phi::DenseTensor*>(fwd_in.impl().get());
      PADDLE_ENFORCE_NE(
          dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
          paddle::platform::errors::Fatal("Attempting to copy DenseTensorMeta "
                                          "with phi::DataType::UNDEFINED,"
                                          "which is illegal."));
      meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
250
      meta.SetPlace(fwd_in.place());
251
    }
252 253 254
  } else {
    VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
               "non-DenseTensor argument.";
255 256 257
  }
}

258 259 260
void GradNodeBase::SetGradOutMeta(
    const std::vector<paddle::experimental::Tensor>& fwd_in, size_t slot_rank) {
  size_t slot_size = fwd_in.size();
261
  PADDLE_ENFORCE_LE(
262
      slot_rank, (bwd_out_meta_.size() - 1),
263 264 265 266
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
267
  auto& metas = bwd_out_meta_.at(slot_rank);
268
  // Init stop gradient vector before use to avoid push back
269 270 271 272 273 274 275
  if (metas.size() < slot_size) {
    metas.resize(slot_size);
  }
  for (size_t i = 0; i < slot_size; i++) {
    const auto& fwd_in_tensor = fwd_in[i];
    auto& meta = metas[i];
    auto* fwd_in_meta = egr::EagerUtils::nullable_autograd_meta(fwd_in_tensor);
276
    // Set Stop_gradient
277 278 279
    if (fwd_in_meta) {
      meta.SetStopGradient(fwd_in_meta->StopGradient());
    }
280 281 282 283 284 285 286 287 288 289 290
    // Set Adj Edges
    if (fwd_in_meta && !fwd_in_meta->StopGradient()) {
      auto node = fwd_in_meta->GetMutableGradNode();
      if (!node || !node.get()) {
        fwd_in_meta->SetGradNode(
            std::make_shared<egr::GradNodeAccumulation>(fwd_in_meta));
      }
      VLOG(6) << "Add Edges for slot: " << slot_rank << ", the Edge is from "
              << this->name() << " (addr: " << this << ") "
              << " to " << fwd_in_meta->GetMutableGradNode()->name()
              << " (addr: " << fwd_in_meta->GetMutableGradNode().get() << ")";
291

292 293 294
      meta.SetEdge(fwd_in_meta->GetMutableGradNode(),
                   fwd_in_meta->OutRankInfo());
    }
295 296 297 298 299 300
    // Record TensorMeta
    if (fwd_in_tensor.impl() && fwd_in_tensor.impl().get()) {
      if (phi::DenseTensor::classof(fwd_in_tensor.impl().get())) {
        // Only Copy Meta
        phi::DenseTensor* dense_tensor =
            static_cast<phi::DenseTensor*>(fwd_in_tensor.impl().get());
301
        PADDLE_ENFORCE_NE(dense_tensor->dtype(), phi::DataType::UNDEFINED,
302
                          paddle::platform::errors::Fatal(
303 304
                              "Attempting to copy DenseTensorMeta "
                              "with phi::DataType::UNDEFINED,"
305 306
                              "which is illegal."));
        meta.SetTensorMeta(dense_tensor->meta());
C
Chen Weihang 已提交
307
        meta.SetPlace(fwd_in_tensor.place());
308 309
      }
    } else {
310 311 312
      VLOG(6)
          << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
             "non-DenseTensor argument.";
313
    }
314
  }
315 316 317 318 319 320 321 322 323
}

void GradNodeBase::SetDefaultGradInOutMeta() {
  PADDLE_ENFORCE((bwd_out_meta_.size() == 1) && (bwd_in_meta_.size() == 1),
                 paddle::platform::errors::PreconditionNotMet(
                     "We can only support 1 input and 1 output in default grad "
                     "meta setter, other size of inputs and outputs should "
                     "create with Setter and Getters"));
  // Default stop_gradient is false and slot id is 0, slot size is 1;
324 325
  bwd_out_meta_[0].resize(1);
  bwd_in_meta_[0].resize(1);
326 327
}

328 329 330 331 332
int64_t GradNodeBase::RegisterGradientHook(
    size_t slot_id, size_t rank, std::shared_ptr<egr::TensorHook>&& hook) {
  gradient_hooks_.emplace(next_hook_id_,
                          std::make_tuple(slot_id, rank, std::move(hook)));
  return next_hook_id_++;
333 334
}

335 336
paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                     kSlotSmallVectorSize>
337
GradNodeBase::ApplyGradientHooks(
338 339 340 341 342
    const paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                               kSlotSmallVectorSize>& tensors) {
  paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                       kSlotSmallVectorSize>
      outs(tensors.size());
343 344 345 346 347
  for (auto& hook_pair : gradient_hooks_) {
    size_t slot_id = std::get<0>(hook_pair.second);
    size_t rank = std::get<1>(hook_pair.second);

    auto hook = std::get<2>(hook_pair.second);
348 349 350 351 352 353 354 355 356 357 358 359

    PADDLE_ENFORCE(slot_id < tensors.size(),
                   paddle::platform::errors::Fatal(
                       "Slot_id from registered hook should be smaller than "
                       "slot size of grad_tensors"));

    PADDLE_ENFORCE(rank < tensors[slot_id].size(),
                   paddle::platform::errors::Fatal(
                       "rank of slot %d from registered hook should be smaller "
                       "than rank size of grad_tensors",
                       slot_id));

360
    std::vector<paddle::experimental::Tensor>& slot_out = outs[slot_id];
361
    slot_out.resize(tensors[slot_id].size());
362
    paddle::experimental::Tensor& out = slot_out[rank];
363
    if (!out.defined() || !out.initialized()) {
364
      out = (*hook)(tensors[slot_id][rank]);
365
    } else {
366
      // If more than one hook is registered, the input to the next hook func
367
      // should be the output of the previous hook
368
      out = (*hook)(out);
369 370 371 372 373 374 375 376 377 378 379 380
    }
  }

  for (size_t i = 0; i < outs.size(); i++) {
    if (outs[i].empty() && (!tensors[i].empty())) {
      outs[i].resize(tensors[i].size());
    }
    // TODO(Jiabin): Optimize this if we only add hook slot by slot
    for (size_t j = 0; j < outs[i].size(); j++) {
      if (!outs[i][j].defined() || !outs[i][j].initialized()) {
        outs[i][j] = tensors[i][j];
      }
381
      CheckTensor(tensors[i][j], outs[i][j]);
382 383 384 385 386 387
    }
  }

  return outs;
}

388
void GradNodeBase::HandleComplexGradToRealGrad(
389 390
    paddle::small_vector<std::vector<paddle::experimental::Tensor>,
                         kSlotSmallVectorSize>* out_grads) {
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
  for (size_t slot_id = 0; slot_id < out_grads->size(); slot_id++) {
    const std::vector<paddle::experimental::Tensor>& slot_out_grads =
        (*out_grads)[slot_id];
    for (size_t rank_id = 0; rank_id < slot_out_grads.size(); rank_id++) {
      const GradSlotMeta& slot_meta = bwd_out_meta_[slot_id][rank_id];

      PADDLE_ENFORCE(
          slot_meta.HasTensorMeta() > 0,
          paddle::platform::errors::Fatal(
              "We require TensorMeta in GradInputMeta() to obtain forward data "
              "types."
              "However, no TensorMeta is detected in bwd_out_meta_."));

      auto fwd_data_type = paddle::framework::TransToProtoVarType(
          slot_meta.GetTensorMeta().dtype);
      const paddle::experimental::Tensor& grad = slot_out_grads[rank_id];

      if (paddle::framework::IsComplexType(fwd_data_type)) continue;

      // Only Handle Complex To Real for DenseTensor for now
      if (phi::DenseTensor::classof(grad.impl().get())) {
        phi::DenseTensor* grad_dense_tensor =
            static_cast<phi::DenseTensor*>(grad.impl().get());

        auto curr_data_type =
            paddle::framework::TransToProtoVarType(grad_dense_tensor->type());
        if (!paddle::framework::IsComplexType(curr_data_type)) continue;

        // Convert Complex GradOut to Real
        auto out = std::make_shared<phi::DenseTensor>();
        paddle::framework::TransComplexToReal(fwd_data_type, curr_data_type,
                                              *grad_dense_tensor, out.get());

        (*out_grads)[slot_id][rank_id].set_impl(out);
      }
    }
  }
}

430
}  // namespace egr