init.cc 7.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include <string.h>  // for strdup
D
dzhwinter 已提交
15
#include <algorithm>
C
chengduo 已提交
16 17
#include <fstream>
#include <iostream>
Q
qingqing01 已提交
18 19
#include <memory>
#include <set>
D
dzhwinter 已提交
20
#include <stdexcept>
D
dzhwinter 已提交
21 22
#include <string>

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/operator.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/cpu_info.h"
26
#include "paddle/fluid/string/split.h"
S
sneaxiy 已提交
27
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
28
#include "paddle/fluid/platform/cuda_device_guard.h"
29
#include "paddle/fluid/platform/dynload/cupti.h"
S
sneaxiy 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/device_context.h"
32
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/place.h"
34
#include "paddle/fluid/string/piece.h"
35

36
DECLARE_int32(paddle_num_threads);
37 38 39
DEFINE_int32(multiple_of_cupti_buffer_size, 1,
             "Multiple of the CUPTI device buffer size. If the timestamps have "
             "been dropped when you are profiling, try increasing this value.");
T
tensor-tang 已提交
40

D
dzhwinter 已提交
41 42 43
namespace paddle {
namespace framework {

44 45 46 47
#ifdef _WIN32
#define strdup _strdup
#endif

D
dzhwinter 已提交
48
std::once_flag gflags_init_flag;
49
std::once_flag glog_init_flag;
X
Xin Pan 已提交
50
std::once_flag p2p_init_flag;
51
std::once_flag glog_warning_once_flag;
D
dzhwinter 已提交
52

53
bool InitGflags(std::vector<std::string> args) {
54
  bool successed = false;
D
dzhwinter 已提交
55
  std::call_once(gflags_init_flag, [&]() {
C
chengduo 已提交
56
    FLAGS_logtostderr = true;
L
Leo Chen 已提交
57 58 59 60 61
    // NOTE(zhiqiu): dummy is needed, since the function
    // ParseNewCommandLineFlags in gflags.cc starts processing
    // commandline strings from idx 1.
    // The reason is, it assumes that the first one (idx 0) is
    // the filename of executable file.
62 63
    args.insert(args.begin(), "dummy");
    std::vector<char *> argv;
D
dzhwinter 已提交
64
    std::string line;
65 66 67 68
    int argc = args.size();
    for (auto &arg : args) {
      argv.push_back(const_cast<char *>(arg.data()));
      line += arg;
D
dzhwinter 已提交
69 70
      line += ' ';
    }
L
Leo Chen 已提交
71 72
    VLOG(1) << "Before Parse: argc is " << argc
            << ", Init commandline: " << line;
73 74

    char **arr = argv.data();
D
dzhwinter 已提交
75
    google::ParseCommandLineFlags(&argc, &arr, true);
76
    successed = true;
77 78

    VLOG(1) << "After Parse: argc is " << argc;
D
dzhwinter 已提交
79
  });
80
  return successed;
D
dzhwinter 已提交
81 82
}

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = devices.size();
    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        PADDLE_ENFORCE(
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]),
            "Failed to test P2P access.");
        if (can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
Y
Yu Yang 已提交
98
          platform::CUDADeviceGuard guard(devices[i]);
99 100 101 102 103 104 105 106
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
  });
#endif
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
void InitCupti() {
#ifdef PADDLE_WITH_CUPTI
  if (FLAGS_multiple_of_cupti_buffer_size == 1) return;
  size_t attrValue = 0, attrValueSize = sizeof(size_t);
#define MULTIPLY_ATTR_VALUE(attr)                                 \
  {                                                               \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivityGetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
    attrValue *= FLAGS_multiple_of_cupti_buffer_size;             \
    LOG(WARNING) << "Set " #attr " " << attrValue << " byte";     \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivitySetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
  }
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE);
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP);
#if CUDA_VERSION >= 9000
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE);
#endif
#undef MULTIPLY_ATTR_VALUE
#endif
}

X
Xin Pan 已提交
129
void InitDevices(bool init_p2p) {
130 131 132
  // CUPTI attribute should be set before any CUDA context is created (see CUPTI
  // documentation about CUpti_ActivityAttribute).
  InitCupti();
133
  /*Init all available devices by default */
134
  std::vector<int> devices;
135
#ifdef PADDLE_WITH_CUDA
D
dzhwinter 已提交
136
  try {
137 138
    // use user specified GPUs in single-node multi-process mode.
    devices = platform::GetSelectedDevices();
D
dzhwinter 已提交
139 140
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
141
  }
D
dzhwinter 已提交
142
#endif
143
  InitDevices(init_p2p, devices);
D
dzhwinter 已提交
144 145
}

146 147 148 149
void InitDevices(bool init_p2p, const std::vector<int> devices) {
  std::vector<platform::Place> places;

  for (size_t i = 0; i < devices.size(); ++i) {
150 151 152
    // In multi process multi gpu mode, we may have gpuid = 7
    // but count = 1.
    if (devices[i] < 0) {
153 154 155
      LOG(WARNING) << "Invalid devices id.";
      continue;
    }
156

157 158 159 160 161 162 163
    places.emplace_back(platform::CUDAPlace(devices[i]));
  }
  if (init_p2p) {
    InitP2P(devices);
  }
  places.emplace_back(platform::CPUPlace());
  platform::DeviceContextPool::Init(places);
Q
qingqing01 已提交
164

165
#ifndef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
166
  platform::SetNumThreads(FLAGS_paddle_num_threads);
167
#endif
T
tensor-tang 已提交
168

T
tensor-tang 已提交
169
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__OSX__)
T
tensor-tang 已提交
170
  if (platform::MayIUse(platform::avx)) {
T
tensor-tang 已提交
171 172 173 174
#ifndef __AVX__
    LOG(WARNING) << "AVX is available, Please re-compile on local machine";
#endif
  }
175 176 177 178 179 180 181 182 183 184

// Throw some informations when CPU instructions mismatch.
#define AVX_GUIDE(compiletime, runtime)                                     \
  LOG(FATAL)                                                                \
      << "This version is compiled on higher instruction(" #compiletime     \
         ") system, you may encounter illegal instruction error running on" \
         " your local CPU machine. Please reinstall the " #runtime          \
         " version or compile from source code."

#ifdef __AVX512F__
T
tensor-tang 已提交
185 186
  if (!platform::MayIUse(platform::avx512f)) {
    if (platform::MayIUse(platform::avx2)) {
187
      AVX_GUIDE(AVX512, AVX2);
T
tensor-tang 已提交
188
    } else if (platform::MayIUse(platform::avx)) {
189 190 191 192 193
      AVX_GUIDE(AVX512, AVX);
    } else {
      AVX_GUIDE(AVX512, NonAVX);
    }
  }
T
tensor-tang 已提交
194
#endif
195 196

#ifdef __AVX2__
T
tensor-tang 已提交
197 198
  if (!platform::MayIUse(platform::avx2)) {
    if (platform::MayIUse(platform::avx)) {
199 200 201 202
      AVX_GUIDE(AVX2, AVX);
    } else {
      AVX_GUIDE(AVX2, NonAVX);
    }
T
tensor-tang 已提交
203 204
  }
#endif
205 206

#ifdef __AVX__
T
tensor-tang 已提交
207
  if (!platform::MayIUse(platform::avx)) {
208
    AVX_GUIDE(AVX, NonAVX);
T
tensor-tang 已提交
209
  }
210 211
#endif
#undef AVX_GUIDE
T
tensor-tang 已提交
212 213

#endif
214 215
}

C
chengduo 已提交
216
#ifndef _WIN32
217
void SignalHandle(const char *data, int size) {
C
chengduo 已提交
218 219
  auto file_path = string::Sprintf("/tmp/paddle.%d.dump_info", ::getpid());
  try {
220 221
    // The signal is coming line by line but we print general guide just once
    std::call_once(glog_warning_once_flag, [&]() {
222 223 224 225 226
      LOG(WARNING) << "Warning: PaddlePaddle catches a failure signal, it may "
                      "not work properly\n";
      LOG(WARNING) << "You could check whether you killed PaddlePaddle "
                      "thread/process accidentally or report the case to "
                      "PaddlePaddle\n";
227 228 229
      LOG(WARNING) << "The detail failure signal is:\n\n";
    });

230
    LOG(WARNING) << std::string(data, size);
C
chengduo 已提交
231 232 233 234 235 236 237 238 239
    std::ofstream dump_info;
    dump_info.open(file_path, std::ios::app);
    dump_info << std::string(data, size);
    dump_info.close();
  } catch (...) {
  }
}
#endif

Y
Yang Yu 已提交
240
void InitGLOG(const std::string &prog_name) {
241 242 243 244
  std::call_once(glog_init_flag, [&]() {
    // glog will not hold the ARGV[0] inside.
    // Use strdup to alloc a new string.
    google::InitGoogleLogging(strdup(prog_name.c_str()));
C
chengduo 已提交
245
#ifndef _WIN32
246 247
    google::InstallFailureSignalHandler();
    google::InstallFailureWriter(&SignalHandle);
C
chengduo 已提交
248
#endif
249
  });
Y
Yang Yu 已提交
250 251
}

D
dzhwinter 已提交
252 253
}  // namespace framework
}  // namespace paddle