init.cc 7.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include <string.h>  // for strdup
D
dzhwinter 已提交
15
#include <algorithm>
C
chengduo 已提交
16 17
#include <fstream>
#include <iostream>
Q
qingqing01 已提交
18 19
#include <memory>
#include <set>
D
dzhwinter 已提交
20
#include <stdexcept>
D
dzhwinter 已提交
21 22
#include <string>

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/operator.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/cpu_info.h"
26
#include "paddle/fluid/string/split.h"
S
sneaxiy 已提交
27
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
28
#include "paddle/fluid/platform/cuda_device_guard.h"
29
#include "paddle/fluid/platform/dynload/cupti.h"
S
sneaxiy 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/device_context.h"
32
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/place.h"
34
#include "paddle/fluid/string/piece.h"
35

36
DECLARE_int32(paddle_num_threads);
37 38 39
DEFINE_int32(multiple_of_cupti_buffer_size, 1,
             "Multiple of the CUPTI device buffer size. If the timestamps have "
             "been dropped when you are profiling, try increasing this value.");
T
tensor-tang 已提交
40

D
dzhwinter 已提交
41 42 43
namespace paddle {
namespace framework {

44 45 46 47
#ifdef _WIN32
#define strdup _strdup
#endif

D
dzhwinter 已提交
48
std::once_flag gflags_init_flag;
49
std::once_flag glog_init_flag;
X
Xin Pan 已提交
50
std::once_flag p2p_init_flag;
51
std::once_flag glog_warning_once_flag;
D
dzhwinter 已提交
52

53 54
bool InitGflags(std::vector<std::string> argv) {
  bool successed = false;
D
dzhwinter 已提交
55
  std::call_once(gflags_init_flag, [&]() {
C
chengduo 已提交
56
    FLAGS_logtostderr = true;
L
Leo Chen 已提交
57 58 59 60 61
    // NOTE(zhiqiu): dummy is needed, since the function
    // ParseNewCommandLineFlags in gflags.cc starts processing
    // commandline strings from idx 1.
    // The reason is, it assumes that the first one (idx 0) is
    // the filename of executable file.
W
wanghaoshuang 已提交
62
    argv.insert(argv.begin(), "dummy");
D
dzhwinter 已提交
63 64 65 66 67 68 69 70
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
L
Leo Chen 已提交
71 72
    VLOG(1) << "Before Parse: argc is " << argc
            << ", Init commandline: " << line;
D
dzhwinter 已提交
73
    google::ParseCommandLineFlags(&argc, &arr, true);
L
Leo Chen 已提交
74
    VLOG(1) << "After Parse: argc is " << argc;
75
    successed = true;
D
dzhwinter 已提交
76
  });
77
  return successed;
D
dzhwinter 已提交
78 79
}

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = devices.size();
    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        PADDLE_ENFORCE(
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]),
            "Failed to test P2P access.");
        if (can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
Y
Yu Yang 已提交
95
          platform::CUDADeviceGuard guard(devices[i]);
96 97 98 99 100 101 102 103
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
  });
#endif
}

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
void InitCupti() {
#ifdef PADDLE_WITH_CUPTI
  if (FLAGS_multiple_of_cupti_buffer_size == 1) return;
  size_t attrValue = 0, attrValueSize = sizeof(size_t);
#define MULTIPLY_ATTR_VALUE(attr)                                 \
  {                                                               \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivityGetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
    attrValue *= FLAGS_multiple_of_cupti_buffer_size;             \
    LOG(WARNING) << "Set " #attr " " << attrValue << " byte";     \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivitySetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
  }
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE);
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP);
#if CUDA_VERSION >= 9000
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE);
#endif
#undef MULTIPLY_ATTR_VALUE
#endif
}

X
Xin Pan 已提交
126
void InitDevices(bool init_p2p) {
127 128 129
  // CUPTI attribute should be set before any CUDA context is created (see CUPTI
  // documentation about CUpti_ActivityAttribute).
  InitCupti();
130
  /*Init all available devices by default */
131
  std::vector<int> devices;
132
#ifdef PADDLE_WITH_CUDA
D
dzhwinter 已提交
133
  try {
134 135
    // use user specified GPUs in single-node multi-process mode.
    devices = platform::GetSelectedDevices();
D
dzhwinter 已提交
136 137
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
138
  }
D
dzhwinter 已提交
139
#endif
140
  InitDevices(init_p2p, devices);
D
dzhwinter 已提交
141 142
}

143 144 145 146
void InitDevices(bool init_p2p, const std::vector<int> devices) {
  std::vector<platform::Place> places;

  for (size_t i = 0; i < devices.size(); ++i) {
147 148 149
    // In multi process multi gpu mode, we may have gpuid = 7
    // but count = 1.
    if (devices[i] < 0) {
150 151 152
      LOG(WARNING) << "Invalid devices id.";
      continue;
    }
153

154 155 156 157 158 159 160
    places.emplace_back(platform::CUDAPlace(devices[i]));
  }
  if (init_p2p) {
    InitP2P(devices);
  }
  places.emplace_back(platform::CPUPlace());
  platform::DeviceContextPool::Init(places);
Q
qingqing01 已提交
161

162
#ifndef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
163
  platform::SetNumThreads(FLAGS_paddle_num_threads);
164
#endif
T
tensor-tang 已提交
165

T
tensor-tang 已提交
166
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__OSX__)
T
tensor-tang 已提交
167
  if (platform::MayIUse(platform::avx)) {
T
tensor-tang 已提交
168 169 170 171
#ifndef __AVX__
    LOG(WARNING) << "AVX is available, Please re-compile on local machine";
#endif
  }
172 173 174 175 176 177 178 179 180 181

// Throw some informations when CPU instructions mismatch.
#define AVX_GUIDE(compiletime, runtime)                                     \
  LOG(FATAL)                                                                \
      << "This version is compiled on higher instruction(" #compiletime     \
         ") system, you may encounter illegal instruction error running on" \
         " your local CPU machine. Please reinstall the " #runtime          \
         " version or compile from source code."

#ifdef __AVX512F__
T
tensor-tang 已提交
182 183
  if (!platform::MayIUse(platform::avx512f)) {
    if (platform::MayIUse(platform::avx2)) {
184
      AVX_GUIDE(AVX512, AVX2);
T
tensor-tang 已提交
185
    } else if (platform::MayIUse(platform::avx)) {
186 187 188 189 190
      AVX_GUIDE(AVX512, AVX);
    } else {
      AVX_GUIDE(AVX512, NonAVX);
    }
  }
T
tensor-tang 已提交
191
#endif
192 193

#ifdef __AVX2__
T
tensor-tang 已提交
194 195
  if (!platform::MayIUse(platform::avx2)) {
    if (platform::MayIUse(platform::avx)) {
196 197 198 199
      AVX_GUIDE(AVX2, AVX);
    } else {
      AVX_GUIDE(AVX2, NonAVX);
    }
T
tensor-tang 已提交
200 201
  }
#endif
202 203

#ifdef __AVX__
T
tensor-tang 已提交
204
  if (!platform::MayIUse(platform::avx)) {
205
    AVX_GUIDE(AVX, NonAVX);
T
tensor-tang 已提交
206
  }
207 208
#endif
#undef AVX_GUIDE
T
tensor-tang 已提交
209 210

#endif
211 212
}

C
chengduo 已提交
213
#ifndef _WIN32
214
void SignalHandle(const char *data, int size) {
C
chengduo 已提交
215 216
  auto file_path = string::Sprintf("/tmp/paddle.%d.dump_info", ::getpid());
  try {
217 218
    // The signal is coming line by line but we print general guide just once
    std::call_once(glog_warning_once_flag, [&]() {
219 220 221 222 223
      LOG(WARNING) << "Warning: PaddlePaddle catches a failure signal, it may "
                      "not work properly\n";
      LOG(WARNING) << "You could check whether you killed PaddlePaddle "
                      "thread/process accidentally or report the case to "
                      "PaddlePaddle\n";
224 225 226
      LOG(WARNING) << "The detail failure signal is:\n\n";
    });

227
    LOG(WARNING) << std::string(data, size);
C
chengduo 已提交
228 229 230 231 232 233 234 235 236
    std::ofstream dump_info;
    dump_info.open(file_path, std::ios::app);
    dump_info << std::string(data, size);
    dump_info.close();
  } catch (...) {
  }
}
#endif

Y
Yang Yu 已提交
237
void InitGLOG(const std::string &prog_name) {
238 239 240 241
  std::call_once(glog_init_flag, [&]() {
    // glog will not hold the ARGV[0] inside.
    // Use strdup to alloc a new string.
    google::InitGoogleLogging(strdup(prog_name.c_str()));
C
chengduo 已提交
242
#ifndef _WIN32
243 244
    google::InstallFailureSignalHandler();
    google::InstallFailureWriter(&SignalHandle);
C
chengduo 已提交
245
#endif
246
  });
Y
Yang Yu 已提交
247 248
}

D
dzhwinter 已提交
249 250
}  // namespace framework
}  // namespace paddle