init.cc 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
D
dzhwinter 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yu 已提交
14
#include <string.h>  // for strdup
D
dzhwinter 已提交
15
#include <algorithm>
C
chengduo 已提交
16 17
#include <fstream>
#include <iostream>
Q
qingqing01 已提交
18 19
#include <memory>
#include <set>
D
dzhwinter 已提交
20
#include <stdexcept>
D
dzhwinter 已提交
21 22
#include <string>

Y
Yi Wang 已提交
23
#include "paddle/fluid/framework/operator.h"
T
tensor-tang 已提交
24
#include "paddle/fluid/platform/cpu_helper.h"
T
tensor-tang 已提交
25
#include "paddle/fluid/platform/cpu_info.h"
26
#include "paddle/fluid/string/split.h"
S
sneaxiy 已提交
27
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
28
#include "paddle/fluid/platform/cuda_device_guard.h"
29
#include "paddle/fluid/platform/dynload/cupti.h"
S
sneaxiy 已提交
30
#endif
Y
Yi Wang 已提交
31
#include "paddle/fluid/platform/device_context.h"
32
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/platform/place.h"
34
#include "paddle/fluid/string/piece.h"
35

36
DECLARE_int32(paddle_num_threads);
37 38 39
DEFINE_int32(multiple_of_cupti_buffer_size, 1,
             "Multiple of the CUPTI device buffer size. If the timestamps have "
             "been dropped when you are profiling, try increasing this value.");
T
tensor-tang 已提交
40

D
dzhwinter 已提交
41 42 43
namespace paddle {
namespace framework {

44 45 46 47
#ifdef _WIN32
#define strdup _strdup
#endif

D
dzhwinter 已提交
48
std::once_flag gflags_init_flag;
X
Xin Pan 已提交
49
std::once_flag p2p_init_flag;
D
dzhwinter 已提交
50

51
void InitGflags(std::vector<std::string> argv) {
D
dzhwinter 已提交
52
  std::call_once(gflags_init_flag, [&]() {
C
chengduo 已提交
53
    FLAGS_logtostderr = true;
W
wanghaoshuang 已提交
54
    argv.insert(argv.begin(), "dummy");
D
dzhwinter 已提交
55 56 57 58 59 60 61 62 63
    int argc = argv.size();
    char **arr = new char *[argv.size()];
    std::string line;
    for (size_t i = 0; i < argv.size(); i++) {
      arr[i] = &argv[i][0];
      line += argv[i];
      line += ' ';
    }
    google::ParseCommandLineFlags(&argc, &arr, true);
M
minqiyang 已提交
64
    VLOG(1) << "Init commandline: " << line;
D
dzhwinter 已提交
65 66 67
  });
}

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
void InitP2P(std::vector<int> devices) {
#ifdef PADDLE_WITH_CUDA
  std::call_once(p2p_init_flag, [&]() {
    int count = devices.size();
    for (int i = 0; i < count; ++i) {
      for (int j = 0; j < count; ++j) {
        if (devices[i] == devices[j]) continue;
        int can_acess = -1;
        PADDLE_ENFORCE(
            cudaDeviceCanAccessPeer(&can_acess, devices[i], devices[j]),
            "Failed to test P2P access.");
        if (can_acess != 1) {
          LOG(WARNING) << "Cannot enable P2P access from " << devices[i]
                       << " to " << devices[j];
        } else {
Y
Yu Yang 已提交
83
          platform::CUDADeviceGuard guard(devices[i]);
84 85 86 87 88 89 90 91
          cudaDeviceEnablePeerAccess(devices[j], 0);
        }
      }
    }
  });
#endif
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
void InitCupti() {
#ifdef PADDLE_WITH_CUPTI
  if (FLAGS_multiple_of_cupti_buffer_size == 1) return;
  size_t attrValue = 0, attrValueSize = sizeof(size_t);
#define MULTIPLY_ATTR_VALUE(attr)                                 \
  {                                                               \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivityGetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
    attrValue *= FLAGS_multiple_of_cupti_buffer_size;             \
    LOG(WARNING) << "Set " #attr " " << attrValue << " byte";     \
    PADDLE_ENFORCE(!platform::dynload::cuptiActivitySetAttribute( \
        attr, &attrValueSize, &attrValue));                       \
  }
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE);
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_DEVICE_BUFFER_SIZE_CDP);
#if CUDA_VERSION >= 9000
  MULTIPLY_ATTR_VALUE(CUPTI_ACTIVITY_ATTR_PROFILING_SEMAPHORE_POOL_SIZE);
#endif
#undef MULTIPLY_ATTR_VALUE
#endif
}

X
Xin Pan 已提交
114
void InitDevices(bool init_p2p) {
115 116 117
  // CUPTI attribute should be set before any CUDA context is created (see CUPTI
  // documentation about CUpti_ActivityAttribute).
  InitCupti();
118
  /*Init all available devices by default */
119
  std::vector<int> devices;
120
#ifdef PADDLE_WITH_CUDA
D
dzhwinter 已提交
121
  try {
122 123
    // use user specified GPUs in single-node multi-process mode.
    devices = platform::GetSelectedDevices();
D
dzhwinter 已提交
124 125
  } catch (const std::exception &exp) {
    LOG(WARNING) << "Compiled with WITH_GPU, but no GPU found in runtime.";
126
  }
D
dzhwinter 已提交
127
#endif
128
  InitDevices(init_p2p, devices);
D
dzhwinter 已提交
129 130
}

131 132 133 134
void InitDevices(bool init_p2p, const std::vector<int> devices) {
  std::vector<platform::Place> places;

  for (size_t i = 0; i < devices.size(); ++i) {
135 136 137
    // In multi process multi gpu mode, we may have gpuid = 7
    // but count = 1.
    if (devices[i] < 0) {
138 139 140
      LOG(WARNING) << "Invalid devices id.";
      continue;
    }
141

142 143 144 145 146 147 148
    places.emplace_back(platform::CUDAPlace(devices[i]));
  }
  if (init_p2p) {
    InitP2P(devices);
  }
  places.emplace_back(platform::CPUPlace());
  platform::DeviceContextPool::Init(places);
Q
qingqing01 已提交
149

150
#ifndef PADDLE_WITH_MKLDNN
T
tensor-tang 已提交
151
  platform::SetNumThreads(FLAGS_paddle_num_threads);
152
#endif
T
tensor-tang 已提交
153

T
tensor-tang 已提交
154
#if !defined(_WIN32) && !defined(__APPLE__) && !defined(__OSX__)
T
tensor-tang 已提交
155
  if (platform::MayIUse(platform::avx)) {
T
tensor-tang 已提交
156 157 158 159
#ifndef __AVX__
    LOG(WARNING) << "AVX is available, Please re-compile on local machine";
#endif
  }
160 161 162 163 164 165 166 167 168 169

// Throw some informations when CPU instructions mismatch.
#define AVX_GUIDE(compiletime, runtime)                                     \
  LOG(FATAL)                                                                \
      << "This version is compiled on higher instruction(" #compiletime     \
         ") system, you may encounter illegal instruction error running on" \
         " your local CPU machine. Please reinstall the " #runtime          \
         " version or compile from source code."

#ifdef __AVX512F__
T
tensor-tang 已提交
170 171
  if (!platform::MayIUse(platform::avx512f)) {
    if (platform::MayIUse(platform::avx2)) {
172
      AVX_GUIDE(AVX512, AVX2);
T
tensor-tang 已提交
173
    } else if (platform::MayIUse(platform::avx)) {
174 175 176 177 178
      AVX_GUIDE(AVX512, AVX);
    } else {
      AVX_GUIDE(AVX512, NonAVX);
    }
  }
T
tensor-tang 已提交
179
#endif
180 181

#ifdef __AVX2__
T
tensor-tang 已提交
182 183
  if (!platform::MayIUse(platform::avx2)) {
    if (platform::MayIUse(platform::avx)) {
184 185 186 187
      AVX_GUIDE(AVX2, AVX);
    } else {
      AVX_GUIDE(AVX2, NonAVX);
    }
T
tensor-tang 已提交
188 189
  }
#endif
190 191

#ifdef __AVX__
T
tensor-tang 已提交
192
  if (!platform::MayIUse(platform::avx)) {
193
    AVX_GUIDE(AVX, NonAVX);
T
tensor-tang 已提交
194
  }
195 196
#endif
#undef AVX_GUIDE
T
tensor-tang 已提交
197 198

#endif
199 200
}

C
chengduo 已提交
201
#ifndef _WIN32
202
void SignalHandle(const char *data, int size) {
C
chengduo 已提交
203 204
  auto file_path = string::Sprintf("/tmp/paddle.%d.dump_info", ::getpid());
  try {
205
    LOG(WARNING) << std::string(data, size);
C
chengduo 已提交
206 207 208 209 210 211 212 213 214
    std::ofstream dump_info;
    dump_info.open(file_path, std::ios::app);
    dump_info << std::string(data, size);
    dump_info.close();
  } catch (...) {
  }
}
#endif

Y
Yang Yu 已提交
215
void InitGLOG(const std::string &prog_name) {
Y
Yang Yu 已提交
216 217 218
  // glog will not hold the ARGV[0] inside.
  // Use strdup to alloc a new string.
  google::InitGoogleLogging(strdup(prog_name.c_str()));
C
chengduo 已提交
219 220 221 222
#ifndef _WIN32
  google::InstallFailureSignalHandler();
  google::InstallFailureWriter(&SignalHandle);
#endif
Y
Yang Yu 已提交
223 224
}

D
dzhwinter 已提交
225 226
}  // namespace framework
}  // namespace paddle