pooling.cc 74.2 KB
Newer Older
F
From00 已提交
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

F
From00 已提交
15 16 17 18 19 20 21 22
#include "paddle/phi/kernels/funcs/pooling.h"

#include <algorithm>
#include <vector>
#include "paddle/phi/backends/cpu/cpu_context.h"

namespace phi {
namespace funcs {
23

C
chengduoZH 已提交
24
/*
25 26 27 28 29 30
* Tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
* and width, respectively.
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
*/
31
template <typename PoolProcess, typename T>
F
From00 已提交
32
class Pool2dFunctor<CPUContext, PoolProcess, T> {
33
 public:
F
From00 已提交
34 35 36
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
37
                  const std::vector<int>& strides,
F
From00 已提交
38 39 40 41
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
42
                  PoolProcess pool_process) {
43 44 45
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
46 47 48
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
49 50 51 52 53 54 55 56 57 58 59
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
F
From00 已提交
60
    T* output_data = context.template Alloc<T>(output);
61

62 63
    int hstart = 0, hend = 1;
    int wstart = 0, wend = 1;
64 65 66
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
67
          if (adaptive) {
D
dengkaipeng 已提交
68 69
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
70
          }
71
          for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
72
            int pool_size = 1;
D
dengkaipeng 已提交
73
            if (adaptive) {
D
dengkaipeng 已提交
74 75
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
76
            } else {
D
Double_V 已提交
77
              hstart = ph * stride_height - padding_height;
78
              wstart = pw * stride_width - padding_width;
D
Double_V 已提交
79 80 81 82 83 84
              hend = std::min(hstart + ksize_height,
                              input_height + padding_height);
              wend =
                  std::min(wstart + ksize_width, input_width + padding_width);
              pool_size = (hend - hstart) * (wend - wstart);

D
dengkaipeng 已提交
85
              wstart = std::max(wstart, 0);
D
Double_V 已提交
86 87 88
              hstart = std::max(hstart, 0);
              hend = std::min(hend, input_height);
              wend = std::min(wend, input_width);
D
dengkaipeng 已提交
89
            }
90 91

            T ele = pool_process.initial();
92 93
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
C
chengduo 已提交
94
                pool_process.compute(input_data[h * input_width + w], &ele);
95 96
              }
            }
D
Double_V 已提交
97 98 99 100
            if (exclusive || adaptive) {
              pool_size = (hend - hstart) * (wend - wstart);
            }

C
chengduo 已提交
101
            pool_process.finalize(static_cast<T>(pool_size), &ele);
102 103 104 105 106 107 108 109
            output_data[ph * output_width + pw] = ele;
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
110

F
From00 已提交
111 112 113
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
114 115
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
F
From00 已提交
116 117 118 119 120
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
                  PoolProcess pool_process) {
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];
    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output->dims()[3] : output->dims()[1];
    const int output_height =
        channel_last ? output->dims()[1] : output->dims()[2];
    const int output_width =
        channel_last ? output->dims()[2] : output->dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
F
From00 已提交
145
    T* output_data = context.template Alloc<T>(output);
146

147 148
    int hstart = 0, hend = 1;
    int wstart = 0, wend = 1;
149 150 151 152 153 154 155 156 157 158 159
    if (!channel_last) {
      const int input_stride = input_height * input_width;
      const int output_stride = output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            if (adaptive) {
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
            }
            for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
160
              int pool_size = 1;
161 162 163 164
              if (adaptive) {
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
              } else {
D
Double_V 已提交
165
                hstart = ph * stride_height - padding_height;
166
                wstart = pw * stride_width - padding_width;
D
Double_V 已提交
167 168 169 170 171 172
                hend = std::min(hstart + ksize_height,
                                input_height + padding_height);
                wend =
                    std::min(wstart + ksize_width, input_width + padding_width);
                pool_size = (hend - hstart) * (wend - wstart);

173
                wstart = std::max(wstart, 0);
D
Double_V 已提交
174 175 176
                hstart = std::max(hstart, 0);
                hend = std::min(hend, input_height);
                wend = std::min(wend, input_width);
177 178 179 180 181 182 183 184
              }

              T ele = pool_process.initial();
              for (int h = hstart; h < hend; ++h) {
                for (int w = wstart; w < wend; ++w) {
                  pool_process.compute(input_data[h * input_width + w], &ele);
                }
              }
D
Double_V 已提交
185 186 187
              if (exclusive || adaptive) {
                pool_size = (hend - hstart) * (wend - wstart);
              }
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
              pool_process.finalize(static_cast<T>(pool_size), &ele);
              output_data[ph * output_width + pw] = ele;
            }
          }
          input_data += input_stride;
          output_data += output_stride;
        }
      }
    } else {
      const int input_stride = input_height * input_width * input_channels;
      const int output_stride = output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            if (adaptive) {
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
            }
            for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
207
              int pool_size = 1;
208 209 210 211
              if (adaptive) {
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
              } else {
D
Double_V 已提交
212
                hstart = ph * stride_height - padding_height;
213
                wstart = pw * stride_width - padding_width;
D
Double_V 已提交
214 215 216 217 218 219
                hend = std::min(hstart + ksize_height,
                                input_height + padding_height);
                wend =
                    std::min(wstart + ksize_width, input_width + padding_width);
                pool_size = (hend - hstart) * (wend - wstart);

220
                wstart = std::max(wstart, 0);
D
Double_V 已提交
221 222 223
                hstart = std::max(hstart, 0);
                hend = std::min(hend, input_height);
                wend = std::min(wend, input_width);
224 225 226 227 228 229 230 231 232 233
              }
              T ele = pool_process.initial();
              for (int h = hstart; h < hend; ++h) {
                for (int w = wstart; w < wend; ++w) {
                  pool_process.compute(
                      input_data[h * input_width * input_channels +
                                 w * input_channels + c],
                      &ele);
                }
              }
D
Double_V 已提交
234 235 236
              if (exclusive || adaptive) {
                pool_size = (hend - hstart) * (wend - wstart);
              }
237 238 239 240 241 242 243 244 245 246 247
              pool_process.finalize(static_cast<T>(pool_size), &ele);
              output_data[ph * output_width * output_channels +
                          pw * output_channels + c] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
248 249
};

C
chengduoZH 已提交
250
/*
251 252
* tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
C
chengduoZH 已提交
253
* and width, respectively.
254 255
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
C
chengduoZH 已提交
256
*/
257
template <typename PoolProcess, class T>
F
From00 已提交
258
class Pool2dGradFunctor<CPUContext, PoolProcess, T> {
259
 public:
F
From00 已提交
260 261 262 263 264 265 266 267 268 269 270
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
                  PoolProcess pool_grad_process) {
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
289
    T* input_grad_data = context.template Alloc<T>(input_grad);
290

291 292
    int hstart = 0, hend = 1;
    int wstart = 0, wend = 1;
293 294 295
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
296
          if (adaptive) {
D
dengkaipeng 已提交
297 298
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
299
          }
300
          for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
301
            int pool_size = 1;
D
dengkaipeng 已提交
302
            if (adaptive) {
D
dengkaipeng 已提交
303 304
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
305
            } else {
D
Double_V 已提交
306
              hstart = ph * stride_height - padding_height;
307
              wstart = pw * stride_width - padding_width;
D
Double_V 已提交
308 309 310 311 312 313
              hend = std::min(hstart + ksize_height,
                              input_height + padding_height);
              wend =
                  std::min(wstart + ksize_width, input_width + padding_width);
              pool_size = (hend - hstart) * (wend - wstart);

D
dengkaipeng 已提交
314
              wstart = std::max(wstart, 0);
D
Double_V 已提交
315 316 317 318 319 320
              hstart = std::max(hstart, 0);
              hend = std::min(hend, input_height);
              wend = std::min(wend, input_width);
            }
            if (exclusive || adaptive) {
              pool_size = (hend - hstart) * (wend - wstart);
D
dengkaipeng 已提交
321
            }
322
            float scale = 1.0 / pool_size;
323 324
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
325 326 327 328
                pool_grad_process.compute(
                    input_data[h * input_width + w],
                    output_data[ph * output_width + pw],
                    output_grad_data[ph * output_width + pw],
C
chengduo 已提交
329 330
                    static_cast<T>(scale),
                    input_grad_data + h * input_width + w);
331 332 333 334 335 336 337 338 339 340 341
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
342

F
From00 已提交
343 344 345 346 347 348 349 350 351 352 353 354
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
                  PoolProcess pool_grad_process) {
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output.dims()[3] : output.dims()[1];
    const int output_height =
        channel_last ? output.dims()[1] : output.dims()[2];
    const int output_width = channel_last ? output.dims()[2] : output.dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
381
    T* input_grad_data = context.template Alloc<T>(input_grad);
382

383 384
    int hstart = 0, hend = 1;
    int wstart = 0, wend = 1;
385 386 387 388 389 390 391 392 393 394 395
    if (!channel_last) {
      const int input_stride = input_height * input_width;
      const int output_stride = output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            if (adaptive) {
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
            }
            for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
396
              int pool_size = 1;
397 398 399 400
              if (adaptive) {
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
              } else {
D
Double_V 已提交
401
                hstart = ph * stride_height - padding_height;
402
                wstart = pw * stride_width - padding_width;
D
Double_V 已提交
403 404 405 406 407 408
                hend = std::min(hstart + ksize_height,
                                input_height + padding_height);
                wend =
                    std::min(wstart + ksize_width, input_width + padding_width);
                pool_size = (hend - hstart) * (wend - wstart);

409
                wstart = std::max(wstart, 0);
D
Double_V 已提交
410 411 412 413 414 415
                hstart = std::max(hstart, 0);
                hend = std::min(hend, input_height);
                wend = std::min(wend, input_width);
              }
              if (exclusive || adaptive) {
                pool_size = (hend - hstart) * (wend - wstart);
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
              }
              float scale = 1.0 / pool_size;
              for (int h = hstart; h < hend; ++h) {
                for (int w = wstart; w < wend; ++w) {
                  pool_grad_process.compute(
                      input_data[h * input_width + w],
                      output_data[ph * output_width + pw],
                      output_grad_data[ph * output_width + pw],
                      static_cast<T>(scale),
                      input_grad_data + h * input_width + w);
                }
              }
            }
          }
          input_data += input_stride;
          output_data += output_stride;
          input_grad_data += input_stride;
          output_grad_data += output_stride;
        }
      }
    } else {
      const int input_stride = input_height * input_width * input_channels;
      const int output_stride = output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            if (adaptive) {
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
            }
            for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
447
              int pool_size = 1;
448 449 450 451
              if (adaptive) {
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
              } else {
D
Double_V 已提交
452
                hstart = ph * stride_height - padding_height;
453
                wstart = pw * stride_width - padding_width;
D
Double_V 已提交
454 455 456 457 458 459
                hend = std::min(hstart + ksize_height,
                                input_height + padding_height);
                wend =
                    std::min(wstart + ksize_width, input_width + padding_width);
                pool_size = (hend - hstart) * (wend - wstart);

460
                wstart = std::max(wstart, 0);
D
Double_V 已提交
461 462 463 464 465 466
                hstart = std::max(hstart, 0);
                hend = std::min(hend, input_height);
                wend = std::min(wend, input_width);
              }
              if (exclusive || adaptive) {
                pool_size = (hend - hstart) * (wend - wstart);
467 468 469 470 471 472 473 474
              }
              float scale = 1.0 / pool_size;
              for (int h = hstart; h < hend; ++h) {
                for (int w = wstart; w < wend; ++w) {
                  auto input_idx =
                      h * input_width * input_channels + w * input_channels + c;
                  auto output_idx = ph * output_width * output_channels +
                                    pw * output_channels + c;
F
From00 已提交
475 476 477 478 479
                  pool_grad_process.compute(input_data[input_idx],
                                            output_data[output_idx],
                                            output_grad_data[output_idx],
                                            static_cast<T>(scale),
                                            input_grad_data + input_idx);
480 481 482 483 484 485 486 487 488 489 490 491
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
492 493
};

C
chengduoZH 已提交
494
/*
495 496 497 498 499 500
* Tensors are in NCHW or NHWC format.
* Ksize, strides are two elements. These two elements represent height
* and width, respectively.
* Paddings are four elements. These four elements represent height_up,
* height_down, width_left and width_right, respectively.
*/
501
template <class T>
F
From00 已提交
502
class MaxPool2dGradFunctor<CPUContext, T> {
503
 public:
F
From00 已提交
504 505 506 507 508 509 510 511
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  DenseTensor* input_grad) {
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
530
    T* input_grad_data = context.template Alloc<T>(input_grad);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          int hstart = ph * stride_height - padding_height;
          int hend = std::min(hstart + ksize_height, input_height);
          hstart = std::max(hstart, 0);
          for (int pw = 0; pw < output_width; ++pw) {
            int wstart = pw * stride_width - padding_width;
            int wend = std::min(wstart + ksize_width, input_width);
            wstart = std::max(wstart, 0);

            bool stop = false;
            for (int h = hstart; h < hend && !stop; ++h) {
              for (int w = wstart; w < wend && !stop; ++w) {
                int input_idx = h * input_width + w;
                int output_idx = ph * output_width + pw;
                if (input_data[input_idx] == output_data[output_idx]) {
                  input_grad_data[input_idx] += output_grad_data[output_idx];
                  stop = true;
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }

F
From00 已提交
564 565 566 567 568 569 570 571 572
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  DenseTensor* input_grad) {
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output.dims()[3] : output.dims()[1];
    const int output_height =
        channel_last ? output.dims()[1] : output.dims()[2];
    const int output_width = channel_last ? output.dims()[2] : output.dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
599
    T* input_grad_data = context.template Alloc<T>(input_grad);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671

    if (!channel_last) {
      const int input_stride = input_height * input_width;
      const int output_stride = output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              bool stop = false;
              for (int h = hstart; h < hend && !stop; ++h) {
                for (int w = wstart; w < wend && !stop; ++w) {
                  int input_idx = h * input_width + w;
                  int output_idx = ph * output_width + pw;
                  if (input_data[input_idx] == output_data[output_idx]) {
                    input_grad_data[input_idx] += output_grad_data[output_idx];
                    stop = true;
                  }
                }
              }
            }
          }
          input_data += input_stride;
          output_data += output_stride;
          input_grad_data += input_stride;
          output_grad_data += output_stride;
        }
      }
    } else {
      const int input_stride = input_height * input_width * input_channels;
      const int output_stride = output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);

              bool stop = false;
              for (int h = hstart; h < hend && !stop; ++h) {
                for (int w = wstart; w < wend && !stop; ++w) {
                  int input_idx =
                      h * input_width * input_channels + w * input_channels + c;
                  int output_idx = ph * output_width * output_channels +
                                   pw * output_channels + c;
                  if (input_data[input_idx] == output_data[output_idx]) {
                    input_grad_data[input_idx] += output_grad_data[output_idx];
                    stop = true;
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};
F
From00 已提交
672 673 674 675 676 677 678 679 680 681 682
template class MaxPool2dGradFunctor<CPUContext, float>;
template class MaxPool2dGradFunctor<CPUContext, double>;

template class Pool2dFunctor<CPUContext, MaxPool<float>, float>;
template class Pool2dFunctor<CPUContext, AvgPool<float>, float>;
template class Pool2dGradFunctor<CPUContext, MaxPoolGrad<float>, float>;
template class Pool2dGradFunctor<CPUContext, AvgPoolGrad<float>, float>;
template class Pool2dFunctor<CPUContext, MaxPool<double>, double>;
template class Pool2dFunctor<CPUContext, AvgPool<double>, double>;
template class Pool2dGradFunctor<CPUContext, MaxPoolGrad<double>, double>;
template class Pool2dGradFunctor<CPUContext, AvgPoolGrad<double>, double>;
683

C
chengduoZH 已提交
684
/*
685 686 687 688 689 690 691
* Tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
692
template <typename PoolProcess, class T>
F
From00 已提交
693
class Pool3dFunctor<CPUContext, PoolProcess, T> {
694
 public:
F
From00 已提交
695 696 697
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
698
                  const std::vector<int>& strides,
F
From00 已提交
699 700 701 702
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
703
                  PoolProcess pool_process) {
704 705 706 707
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
708 709 710 711
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
712 713 714 715 716 717 718 719 720 721 722 723 724 725
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
F
From00 已提交
726
    T* output_data = context.template Alloc<T>(output);
727

728 729 730
    int dstart = 0, dend = 1;
    int hstart = 0, hend = 1;
    int wstart = 0, wend = 1;
D
Double_V 已提交
731

732 733 734
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
735
          if (adaptive) {
D
dengkaipeng 已提交
736 737
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
D
dengkaipeng 已提交
738
          }
D
Double_V 已提交
739

740
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
741
            if (adaptive) {
D
dengkaipeng 已提交
742 743
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
744
            }
D
Double_V 已提交
745

746
            for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
747
              int pool_size = 1;
D
dengkaipeng 已提交
748
              if (adaptive) {
D
dengkaipeng 已提交
749 750
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
751
              } else {
D
Double_V 已提交
752 753 754 755 756 757
                dstart = pd * stride_depth - padding_depth;
                dend =
                    std::min(dstart + ksize_depth, input_depth + padding_depth);
                hstart = ph * stride_height - padding_height;
                hend = std::min(hstart + ksize_height,
                                input_height + padding_height);
758
                wstart = pw * stride_width - padding_width;
D
Double_V 已提交
759 760 761 762 763
                wend =
                    std::min(wstart + ksize_width, input_width + padding_width);
                pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
                dstart = std::max(dstart, 0);
                hstart = std::max(hstart, 0);
D
dengkaipeng 已提交
764
                wstart = std::max(wstart, 0);
D
Double_V 已提交
765 766 767
                dend = std::min(dend, input_depth);
                hend = std::min(hend, input_height);
                wend = std::min(wend, input_width);
D
dengkaipeng 已提交
768
              }
769
              int output_idx = (pd * output_height + ph) * output_width + pw;
770
              T ele = pool_process.initial();
771 772 773
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
774
                    pool_process.compute(
C
chengduo 已提交
775 776
                        input_data[(d * input_height + h) * input_width + w],
                        &ele);
777 778 779
                  }
                }
              }
D
Double_V 已提交
780 781 782
              if (exclusive || adaptive) {
                pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
              }
C
chengduo 已提交
783
              pool_process.finalize(static_cast<T>(pool_size), &ele);
784 785 786 787 788 789 790 791 792
              output_data[output_idx] = ele;
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
F
From00 已提交
793 794 795
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
796 797
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
F
From00 已提交
798 799 800 801 802
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* output,
                  PoolProcess pool_process) {
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    bool channel_last = (data_format == "NDHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output->dims()[4] : output->dims()[1];
    const int output_depth =
        channel_last ? output->dims()[1] : output->dims()[2];
    const int output_height =
        channel_last ? output->dims()[2] : output->dims()[3];
    const int output_width =
        channel_last ? output->dims()[3] : output->dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
F
From00 已提交
833
    T* output_data = context.template Alloc<T>(output);
834

835 836 837
    int dstart = 0, dend = 1;
    int hstart = 0, hend = 1;
    int wstart = 0, wend = 1;
838 839 840 841 842 843 844 845 846 847
    if (!channel_last) {
      const int input_stride = input_depth * input_height * input_width;
      const int output_stride = output_depth * output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            if (adaptive) {
              dstart = AdaptStartIndex(pd, input_depth, output_depth);
              dend = AdaptEndIndex(pd, input_depth, output_depth);
            }
D
Double_V 已提交
848

849 850 851 852 853
            for (int ph = 0; ph < output_height; ++ph) {
              if (adaptive) {
                hstart = AdaptStartIndex(ph, input_height, output_height);
                hend = AdaptEndIndex(ph, input_height, output_height);
              }
D
Double_V 已提交
854

855
              for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
856
                int pool_size = 1;
857 858 859 860
                if (adaptive) {
                  wstart = AdaptStartIndex(pw, input_width, output_width);
                  wend = AdaptEndIndex(pw, input_width, output_width);
                } else {
D
Double_V 已提交
861 862 863 864 865 866
                  dstart = pd * stride_depth - padding_depth;
                  dend = std::min(dstart + ksize_depth,
                                  input_depth + padding_depth);
                  hstart = ph * stride_height - padding_height;
                  hend = std::min(hstart + ksize_height,
                                  input_height + padding_height);
867
                  wstart = pw * stride_width - padding_width;
D
Double_V 已提交
868 869 870 871 872 873 874
                  wend = std::min(wstart + ksize_width,
                                  input_width + padding_width);

                  pool_size =
                      (dend - dstart) * (hend - hstart) * (wend - wstart);
                  dstart = std::max(dstart, 0);
                  hstart = std::max(hstart, 0);
875
                  wstart = std::max(wstart, 0);
D
Double_V 已提交
876 877 878
                  dend = std::min(dend, input_depth);
                  hend = std::min(hend, input_height);
                  wend = std::min(wend, input_width);
879
                }
D
Double_V 已提交
880

881 882 883 884 885 886 887 888 889 890 891
                int output_idx = (pd * output_height + ph) * output_width + pw;
                T ele = pool_process.initial();
                for (int d = dstart; d < dend; ++d) {
                  for (int h = hstart; h < hend; ++h) {
                    for (int w = wstart; w < wend; ++w) {
                      pool_process.compute(
                          input_data[(d * input_height + h) * input_width + w],
                          &ele);
                    }
                  }
                }
D
Double_V 已提交
892 893 894 895
                if (exclusive || adaptive) {
                  pool_size =
                      (dend - dstart) * (hend - hstart) * (wend - wstart);
                }
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
                pool_process.finalize(static_cast<T>(pool_size), &ele);
                output_data[output_idx] = ele;
              }
            }
          }
          input_data += input_stride;
          output_data += output_stride;
        }
      }
    } else {
      const int input_stride =
          input_depth * input_height * input_width * input_channels;
      const int output_stride =
          output_depth * output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            if (adaptive) {
              dstart = AdaptStartIndex(pd, input_depth, output_depth);
              dend = AdaptEndIndex(pd, input_depth, output_depth);
            }
D
Double_V 已提交
917

918 919 920 921 922
            for (int ph = 0; ph < output_height; ++ph) {
              if (adaptive) {
                hstart = AdaptStartIndex(ph, input_height, output_height);
                hend = AdaptEndIndex(ph, input_height, output_height);
              }
D
Double_V 已提交
923

924
              for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
925
                int pool_size = 1;
926 927 928 929
                if (adaptive) {
                  wstart = AdaptStartIndex(pw, input_width, output_width);
                  wend = AdaptEndIndex(pw, input_width, output_width);
                } else {
D
Double_V 已提交
930 931 932 933 934 935
                  dstart = pd * stride_depth - padding_depth;
                  dend = std::min(dstart + ksize_depth,
                                  input_depth + padding_depth);
                  hstart = ph * stride_height - padding_height;
                  hend = std::min(hstart + ksize_height,
                                  input_height + padding_height);
936
                  wstart = pw * stride_width - padding_width;
D
Double_V 已提交
937 938 939 940 941 942 943
                  wend = std::min(wstart + ksize_width,
                                  input_width + padding_width);

                  pool_size =
                      (dend - dstart) * (hend - hstart) * (wend - wstart);
                  dstart = std::max(dstart, 0);
                  hstart = std::max(hstart, 0);
944
                  wstart = std::max(wstart, 0);
D
Double_V 已提交
945 946 947
                  dend = std::min(dend, input_depth);
                  hend = std::min(hend, input_height);
                  wend = std::min(wend, input_width);
948 949 950 951 952 953 954 955 956 957 958 959 960 961
                }

                T ele = pool_process.initial();
                for (int d = dstart; d < dend; ++d) {
                  for (int h = hstart; h < hend; ++h) {
                    for (int w = wstart; w < wend; ++w) {
                      int input_idx =
                          ((d * input_height + h) * input_width + w) *
                              input_channels +
                          c;
                      pool_process.compute(input_data[input_idx], &ele);
                    }
                  }
                }
D
Double_V 已提交
962 963 964 965
                if (exclusive || adaptive) {
                  pool_size =
                      (dend - dstart) * (hend - hstart) * (wend - wstart);
                }
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
                pool_process.finalize(static_cast<T>(pool_size), &ele);
                int output_idx =
                    ((pd * output_height + ph) * output_width + pw) *
                        output_channels +
                    c;
                output_data[output_idx] = ele;
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
      }
    }
  }
981 982
};

C
chengduoZH 已提交
983
/*
984 985 986 987 988 989 990
* Tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
991
template <typename PoolProcess, class T>
F
From00 已提交
992
class Pool3dGradFunctor<CPUContext, PoolProcess, T> {
993
 public:
F
From00 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
                  PoolProcess pool_grad_process) {
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
1028
    T* input_grad_data = context.template Alloc<T>(input_grad);
1029

1030 1031 1032
    int dstart = 0, dend = 1;
    int hstart = 0, hend = 1;
    int wstart = 0, wend = 1;
1033 1034 1035
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
1036
          if (adaptive) {
D
dengkaipeng 已提交
1037 1038
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
D
dengkaipeng 已提交
1039
          }
D
Double_V 已提交
1040

1041
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
1042
            if (adaptive) {
D
dengkaipeng 已提交
1043 1044
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
1045
            }
D
Double_V 已提交
1046

1047
            for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
1048
              int pool_size = 1;
D
dengkaipeng 已提交
1049
              if (adaptive) {
D
dengkaipeng 已提交
1050 1051
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
1052
              } else {
D
Double_V 已提交
1053 1054 1055 1056 1057 1058
                dstart = pd * stride_depth - padding_depth;
                dend =
                    std::min(dstart + ksize_depth, input_depth + padding_depth);
                hstart = ph * stride_height - padding_height;
                hend = std::min(hstart + ksize_height,
                                input_height + padding_height);
1059
                wstart = pw * stride_width - padding_width;
D
Double_V 已提交
1060 1061 1062 1063 1064 1065
                wend =
                    std::min(wstart + ksize_width, input_width + padding_width);

                pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
                dstart = std::max(dstart, 0);
                hstart = std::max(hstart, 0);
D
dengkaipeng 已提交
1066
                wstart = std::max(wstart, 0);
D
Double_V 已提交
1067 1068 1069
                dend = std::min(dend, input_depth);
                hend = std::min(hend, input_height);
                wend = std::min(wend, input_width);
D
dengkaipeng 已提交
1070
              }
1071

D
Double_V 已提交
1072 1073 1074
              if (exclusive || adaptive) {
                pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart);
              }
1075
              float scale = 1.0 / pool_size;
1076 1077 1078 1079 1080 1081
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;
F
From00 已提交
1082 1083 1084 1085 1086
                    pool_grad_process.compute(input_data[input_idx],
                                              output_data[output_idx],
                                              output_grad_data[output_idx],
                                              static_cast<T>(scale),
                                              input_grad_data + input_idx);
1087 1088 1089 1090 1091 1092
                  }
                }
              }
            }
          }
        }
1093 1094 1095 1096
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
1097 1098 1099
      }
    }
  }
F
From00 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  bool exclusive,
                  bool adaptive,
                  DenseTensor* input_grad,
                  PoolProcess pool_grad_process) {
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
    bool channel_last = (data_format == "NDHWC");

    const int batch_size = input.dims()[0];
    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output.dims()[4] : output.dims()[1];
    const int output_depth = channel_last ? output.dims()[1] : output.dims()[2];
    const int output_height =
        channel_last ? output.dims()[2] : output.dims()[3];
    const int output_width = channel_last ? output.dims()[3] : output.dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
1142
    T* input_grad_data = context.template Alloc<T>(input_grad);
1143

1144 1145 1146
    int dstart = 0, dend = 1;
    int hstart = 0, hend = 1;
    int wstart = 0, wend = 1;
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    if (!channel_last) {
      const int input_stride = input_depth * input_height * input_width;
      const int output_stride = output_depth * output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            if (adaptive) {
              dstart = AdaptStartIndex(pd, input_depth, output_depth);
              dend = AdaptEndIndex(pd, input_depth, output_depth);
            }
D
Double_V 已提交
1157

1158 1159 1160 1161 1162
            for (int ph = 0; ph < output_height; ++ph) {
              if (adaptive) {
                hstart = AdaptStartIndex(ph, input_height, output_height);
                hend = AdaptEndIndex(ph, input_height, output_height);
              }
D
Double_V 已提交
1163

1164
              for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
1165
                int pool_size = 1;
1166 1167 1168 1169
                if (adaptive) {
                  wstart = AdaptStartIndex(pw, input_width, output_width);
                  wend = AdaptEndIndex(pw, input_width, output_width);
                } else {
D
Double_V 已提交
1170 1171 1172 1173 1174 1175
                  dstart = pd * stride_depth - padding_depth;
                  dend = std::min(dstart + ksize_depth,
                                  input_depth + padding_depth);
                  hstart = ph * stride_height - padding_height;
                  hend = std::min(hstart + ksize_height,
                                  input_height + padding_height);
1176
                  wstart = pw * stride_width - padding_width;
D
Double_V 已提交
1177 1178 1179 1180 1181 1182 1183
                  wend = std::min(wstart + ksize_width,
                                  input_width + padding_width);

                  pool_size =
                      (dend - dstart) * (hend - hstart) * (wend - wstart);
                  dstart = std::max(dstart, 0);
                  hstart = std::max(hstart, 0);
1184
                  wstart = std::max(wstart, 0);
D
Double_V 已提交
1185 1186 1187
                  dend = std::min(dend, input_depth);
                  hend = std::min(hend, input_height);
                  wend = std::min(wend, input_width);
1188 1189
                }

D
Double_V 已提交
1190 1191 1192 1193
                if (exclusive || adaptive) {
                  pool_size =
                      (dend - dstart) * (hend - hstart) * (wend - wstart);
                }
1194 1195 1196 1197 1198 1199 1200
                float scale = 1.0 / pool_size;
                for (int d = dstart; d < dend; ++d) {
                  for (int h = hstart; h < hend; ++h) {
                    for (int w = wstart; w < wend; ++w) {
                      int input_idx = (d * input_height + h) * input_width + w;
                      int output_idx =
                          (pd * output_height + ph) * output_width + pw;
F
From00 已提交
1201 1202 1203 1204 1205
                      pool_grad_process.compute(input_data[input_idx],
                                                output_data[output_idx],
                                                output_grad_data[output_idx],
                                                static_cast<T>(scale),
                                                input_grad_data + input_idx);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
                    }
                  }
                }
              }
            }
          }
          input_data += input_stride;
          output_data += output_stride;
          input_grad_data += input_stride;
          output_grad_data += output_stride;
        }
      }
    } else {
      const int input_stride =
          input_depth * input_height * input_width * input_channels;
      const int output_stride =
          output_depth * output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            if (adaptive) {
              dstart = AdaptStartIndex(pd, input_depth, output_depth);
              dend = AdaptEndIndex(pd, input_depth, output_depth);
            }
D
Double_V 已提交
1230

1231 1232 1233 1234 1235
            for (int ph = 0; ph < output_height; ++ph) {
              if (adaptive) {
                hstart = AdaptStartIndex(ph, input_height, output_height);
                hend = AdaptEndIndex(ph, input_height, output_height);
              }
D
Double_V 已提交
1236

1237
              for (int pw = 0; pw < output_width; ++pw) {
D
Double_V 已提交
1238
                int pool_size = 1;
1239 1240 1241 1242
                if (adaptive) {
                  wstart = AdaptStartIndex(pw, input_width, output_width);
                  wend = AdaptEndIndex(pw, input_width, output_width);
                } else {
D
Double_V 已提交
1243 1244 1245 1246 1247 1248
                  dstart = pd * stride_depth - padding_depth;
                  dend = std::min(dstart + ksize_depth,
                                  input_depth + padding_depth);
                  hstart = ph * stride_height - padding_height;
                  hend = std::min(hstart + ksize_height,
                                  input_height + padding_height);
1249
                  wstart = pw * stride_width - padding_width;
D
Double_V 已提交
1250 1251 1252 1253 1254 1255 1256
                  wend = std::min(wstart + ksize_width,
                                  input_width + padding_width);

                  pool_size =
                      (dend - dstart) * (hend - hstart) * (wend - wstart);
                  dstart = std::max(dstart, 0);
                  hstart = std::max(hstart, 0);
1257
                  wstart = std::max(wstart, 0);
D
Double_V 已提交
1258 1259 1260
                  dend = std::min(dend, input_depth);
                  hend = std::min(hend, input_height);
                  wend = std::min(wend, input_width);
1261 1262
                }

D
Double_V 已提交
1263 1264 1265 1266
                if (exclusive || adaptive) {
                  pool_size =
                      (dend - dstart) * (hend - hstart) * (wend - wstart);
                }
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
                float scale = 1.0 / pool_size;
                for (int d = dstart; d < dend; ++d) {
                  for (int h = hstart; h < hend; ++h) {
                    for (int w = wstart; w < wend; ++w) {
                      int input_idx =
                          ((d * input_height + h) * input_width + w) *
                              input_channels +
                          c;
                      int output_idx =
                          ((pd * output_height + ph) * output_width + pw) *
                              output_channels +
                          c;
F
From00 已提交
1279 1280 1281 1282 1283
                      pool_grad_process.compute(input_data[input_idx],
                                                output_data[output_idx],
                                                output_grad_data[output_idx],
                                                static_cast<T>(scale),
                                                input_grad_data + input_idx);
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
1298 1299
};

C
chengduoZH 已提交
1300
/*
1301 1302 1303 1304 1305 1306 1307
* Tensors are in NCDHW or NDHWC format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
* Paddings are six elements. These six elements represent depth_forth,
* depth_back,
* height_up, height_down, width_left and width_right, respectively.
*/
1308
template <class T>
F
From00 已提交
1309
class MaxPool3dGradFunctor<CPUContext, T> {
1310
 public:
F
From00 已提交
1311 1312 1313 1314 1315 1316 1317 1318
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  DenseTensor* input_grad) {
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
1342
    T* input_grad_data = context.template Alloc<T>(input_grad);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          int dstart = pd * stride_depth - padding_depth;
          int dend = std::min(dstart + ksize_depth, input_depth);
          dstart = std::max(dstart, 0);
          for (int ph = 0; ph < output_height; ++ph) {
            int hstart = ph * stride_height - padding_height;
            int hend = std::min(hstart + ksize_height, input_height);
            hstart = std::max(hstart, 0);
            for (int pw = 0; pw < output_width; ++pw) {
              int wstart = pw * stride_width - padding_width;
              int wend = std::min(wstart + ksize_width, input_width);
              wstart = std::max(wstart, 0);
              bool stop = false;
              for (int d = dstart; d < dend && !stop; ++d) {
                for (int h = hstart; h < hend && !stop; ++h) {
                  for (int w = wstart; w < wend && !stop; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    int output_idx =
                        (pd * output_height + ph) * output_width + pw;

                    if (input_data[input_idx] == output_data[output_idx]) {
                      input_grad_data[input_idx] +=
                          output_grad_data[output_idx];
                      stop = true;
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
F
From00 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const DenseTensor& output,
                  const DenseTensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format,
                  DenseTensor* input_grad) {
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
    bool channel_last = (data_format == "NDHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output.dims()[4] : output.dims()[1];
    const int output_depth = channel_last ? output.dims()[1] : output.dims()[2];
    const int output_height =
        channel_last ? output.dims()[2] : output.dims()[3];
    const int output_width = channel_last ? output.dims()[3] : output.dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
F
From00 已提交
1423
    T* input_grad_data = context.template Alloc<T>(input_grad);
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

    if (!channel_last) {
      const int input_stride = input_depth * input_height * input_width;
      const int output_stride = output_depth * output_height * output_width;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            int dstart = pd * stride_depth - padding_depth;
            int dend = std::min(dstart + ksize_depth, input_depth);
            dstart = std::max(dstart, 0);
            for (int ph = 0; ph < output_height; ++ph) {
              int hstart = ph * stride_height - padding_height;
              int hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
              for (int pw = 0; pw < output_width; ++pw) {
                int wstart = pw * stride_width - padding_width;
                int wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
                bool stop = false;
                for (int d = dstart; d < dend && !stop; ++d) {
                  for (int h = hstart; h < hend && !stop; ++h) {
                    for (int w = wstart; w < wend && !stop; ++w) {
                      int input_idx = (d * input_height + h) * input_width + w;
                      int output_idx =
                          (pd * output_height + ph) * output_width + pw;

                      if (input_data[input_idx] == output_data[output_idx]) {
                        input_grad_data[input_idx] +=
                            output_grad_data[output_idx];
                        stop = true;
                      }
                    }
                  }
                }
              }
            }
          }
          input_data += input_stride;
          output_data += output_stride;
          input_grad_data += input_stride;
          output_grad_data += output_stride;
        }
      }
    } else {
      const int input_stride =
          input_depth * input_height * input_width * input_channels;
      const int output_stride =
          output_depth * output_height * output_width * output_channels;
      for (int i = 0; i < batch_size; i++) {
        for (int c = 0; c < output_channels; ++c) {
          for (int pd = 0; pd < output_depth; ++pd) {
            int dstart = pd * stride_depth - padding_depth;
            int dend = std::min(dstart + ksize_depth, input_depth);
            dstart = std::max(dstart, 0);
            for (int ph = 0; ph < output_height; ++ph) {
              int hstart = ph * stride_height - padding_height;
              int hend = std::min(hstart + ksize_height, input_height);
              hstart = std::max(hstart, 0);
              for (int pw = 0; pw < output_width; ++pw) {
                int wstart = pw * stride_width - padding_width;
                int wend = std::min(wstart + ksize_width, input_width);
                wstart = std::max(wstart, 0);
                bool stop = false;
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
                for (int d = dstart; d < dend && !stop; ++d) {
                  for (int h = hstart; h < hend && !stop; ++h) {
                    for (int w = wstart; w < wend && !stop; ++w) {
                      int input_idx =
                          ((d * input_height + h) * input_width + w) *
                              input_channels +
                          c;
                      int output_idx =
                          ((pd * output_height + ph) * output_width + pw) *
                              output_channels +
                          c;

                      if (input_data[input_idx] == output_data[output_idx]) {
                        input_grad_data[input_idx] +=
                            output_grad_data[output_idx];
                        stop = true;
                      }
                    }
                  }
                }
              }
            }
          }
        }
        input_data += input_stride;
        output_data += output_stride;
        input_grad_data += input_stride;
        output_grad_data += output_stride;
      }
    }
  }
};
F
From00 已提交
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
template class MaxPool3dGradFunctor<CPUContext, float>;
template class MaxPool3dGradFunctor<CPUContext, double>;

template class Pool3dFunctor<CPUContext, MaxPool<float>, float>;
template class Pool3dFunctor<CPUContext, AvgPool<float>, float>;
template class Pool3dGradFunctor<CPUContext, MaxPoolGrad<float>, float>;
template class Pool3dGradFunctor<CPUContext, AvgPoolGrad<float>, float>;
template class Pool3dFunctor<CPUContext, MaxPool<double>, double>;
template class Pool3dFunctor<CPUContext, AvgPool<double>, double>;
template class Pool3dGradFunctor<CPUContext, MaxPoolGrad<double>, double>;
template class Pool3dGradFunctor<CPUContext, AvgPoolGrad<double>, double>;
C
chengduoZH 已提交
1531

C
chengduoZH 已提交
1532 1533 1534 1535 1536
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
1537
template <typename T1, typename T2>
F
From00 已提交
1538
class MaxPool2dWithIndexFunctor<CPUContext, T1, T2> {
C
chengduoZH 已提交
1539
 public:
F
From00 已提交
1540 1541 1542
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
C
chengduo 已提交
1543
                  const std::vector<int>& strides,
F
From00 已提交
1544 1545 1546 1547
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* output,
                  DenseTensor* mask) {
C
chengduoZH 已提交
1548 1549 1550
    const int batch_size = input.dims()[0];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
1551 1552 1553
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
C
chengduoZH 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
1563
    const T1* input_data = input.data<T1>();
F
From00 已提交
1564 1565
    T1* output_data = context.template Alloc<T1>(output);
    T2* mask_data = context.template Alloc<T2>(mask);
C
chengduoZH 已提交
1566

1567 1568
    int hstart, hend;
    int wstart, wend;
C
chengduoZH 已提交
1569 1570 1571
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
1572
          if (adaptive) {
D
dengkaipeng 已提交
1573 1574
            hstart = AdaptStartIndex(ph, input_height, output_height);
            hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
1575
          } else {
1576 1577
            hstart = ph * stride_height - padding_height;
            hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
1578 1579
            hstart = std::max(hstart, 0);
          }
C
chengduoZH 已提交
1580
          for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
1581
            if (adaptive) {
D
dengkaipeng 已提交
1582 1583
              wstart = AdaptStartIndex(pw, input_width, output_width);
              wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
1584
            } else {
1585 1586
              wstart = pw * stride_width - padding_width;
              wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
1587 1588
              wstart = std::max(wstart, 0);
            }
C
chengduoZH 已提交
1589

C
chengduoZH 已提交
1590
            T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
            int index = -1;
            for (int h = hstart; h < hend; ++h) {
              for (int w = wstart; w < wend; ++w) {
                if (ele < input_data[h * input_width + w]) {
                  ele = input_data[h * input_width + w];
                  index = h * input_width + w;
                }
              }
            }
            output_data[ph * output_width + pw] = ele;
            mask_data[ph * output_width + pw] = index;
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
1613 1614 1615 1616 1617
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
1618
template <typename T1, typename T2>
F
From00 已提交
1619
class MaxPool2dWithIndexGradFunctor<CPUContext, T1, T2> {
C
chengduoZH 已提交
1620
 public:
F
From00 已提交
1621 1622 1623 1624
  void operator()(const CPUContext& context,
                  const DenseTensor& output_grad,
                  const DenseTensor& mask,
                  const std::vector<int>& ksize,
C
chengduo 已提交
1625
                  const std::vector<int>& strides,
F
From00 已提交
1626 1627 1628
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* input_grad) {
C
chengduoZH 已提交
1629 1630 1631
    const int batch_size = input_grad->dims()[0];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
C
chengduoZH 已提交
1632 1633 1634 1635 1636 1637
    const int output_channels = output_grad.dims()[1];
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int input_stride = input_height * input_width;
    const int output_stride = output_height * output_width;

C
chengduoZH 已提交
1638 1639
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
F
From00 已提交
1640
    T1* input_grad_data = context.template Alloc<T1>(input_grad);
C
chengduoZH 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int ph = 0; ph < output_height; ++ph) {
          for (int pw = 0; pw < output_width; ++pw) {
            const int output_idx = ph * output_width + pw;
            const int input_idx = static_cast<int>(mask_data[output_idx]);
            input_grad_data[input_idx] += output_grad_data[output_idx];
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

F
From00 已提交
1660 1661 1662 1663
template class MaxPool2dWithIndexFunctor<CPUContext, float, int>;
template class MaxPool2dWithIndexGradFunctor<CPUContext, float, int>;
template class MaxPool2dWithIndexFunctor<CPUContext, double, int>;
template class MaxPool2dWithIndexGradFunctor<CPUContext, double, int>;
C
chengduoZH 已提交
1664

C
chengduoZH 已提交
1665 1666 1667 1668 1669
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
1670
template <typename T1, typename T2>
F
From00 已提交
1671
class MaxPool3dWithIndexFunctor<CPUContext, T1, T2> {
C
chengduoZH 已提交
1672
 public:
F
From00 已提交
1673 1674 1675
  void operator()(const CPUContext& context,
                  const DenseTensor& input,
                  const std::vector<int>& ksize,
C
chengduo 已提交
1676
                  const std::vector<int>& strides,
F
From00 已提交
1677 1678 1679 1680
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* output,
                  DenseTensor* mask) {
C
chengduoZH 已提交
1681 1682 1683 1684
    const int batch_size = input.dims()[0];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
1685 1686 1687 1688
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
C
chengduoZH 已提交
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
1701
    const T1* input_data = input.data<T1>();
F
From00 已提交
1702 1703
    T1* output_data = context.template Alloc<T1>(output);
    T2* mask_data = context.template Alloc<T2>(mask);
C
chengduoZH 已提交
1704

1705 1706 1707
    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
C
chengduoZH 已提交
1708 1709 1710
    for (int i = 0; i < batch_size; i++) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
D
dengkaipeng 已提交
1711
          if (adaptive) {
D
dengkaipeng 已提交
1712 1713
            dstart = AdaptStartIndex(pd, input_depth, output_depth);
            dend = AdaptEndIndex(pd, input_depth, output_depth);
D
dengkaipeng 已提交
1714
          } else {
1715 1716
            dstart = pd * stride_depth - padding_depth;
            dend = std::min(dstart + ksize_depth, input_depth);
D
dengkaipeng 已提交
1717 1718
            dstart = std::max(dstart, 0);
          }
C
chengduoZH 已提交
1719
          for (int ph = 0; ph < output_height; ++ph) {
D
dengkaipeng 已提交
1720
            if (adaptive) {
D
dengkaipeng 已提交
1721 1722
              hstart = AdaptStartIndex(ph, input_height, output_height);
              hend = AdaptEndIndex(ph, input_height, output_height);
D
dengkaipeng 已提交
1723
            } else {
1724 1725
              hstart = ph * stride_height - padding_height;
              hend = std::min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
1726 1727
              hstart = std::max(hstart, 0);
            }
C
chengduoZH 已提交
1728
            for (int pw = 0; pw < output_width; ++pw) {
D
dengkaipeng 已提交
1729
              if (adaptive) {
D
dengkaipeng 已提交
1730 1731
                wstart = AdaptStartIndex(pw, input_width, output_width);
                wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
1732
              } else {
1733 1734
                wstart = pw * stride_width - padding_width;
                wend = std::min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
1735 1736
                wstart = std::max(wstart, 0);
              }
C
chengduoZH 已提交
1737 1738

              int output_idx = (pd * output_height + ph) * output_width + pw;
C
chengduoZH 已提交
1739
              T1 ele = static_cast<T1>(-FLT_MAX);
C
chengduoZH 已提交
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
              int index = -1;
              for (int d = dstart; d < dend; ++d) {
                for (int h = hstart; h < hend; ++h) {
                  for (int w = wstart; w < wend; ++w) {
                    int input_idx = (d * input_height + h) * input_width + w;
                    if (ele < input_data[input_idx]) {
                      index = input_idx;
                      ele = input_data[input_idx];
                    }
                  }
                }
              }
              output_data[output_idx] = ele;
              mask_data[output_idx] = index;
            }
          }
        }
        // offset
        input_data += input_stride;
        output_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

C
chengduoZH 已提交
1766 1767 1768 1769 1770
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
1771
template <typename T1, typename T2>
F
From00 已提交
1772
class MaxPool3dWithIndexGradFunctor<CPUContext, T1, T2> {
C
chengduoZH 已提交
1773
 public:
F
From00 已提交
1774 1775 1776 1777
  void operator()(const CPUContext& context,
                  const DenseTensor& output_grad,
                  const DenseTensor& mask,
                  const std::vector<int>& ksize,
C
chengduo 已提交
1778
                  const std::vector<int>& strides,
F
From00 已提交
1779 1780 1781
                  const std::vector<int>& paddings,
                  bool adaptive,
                  DenseTensor* input_grad) {
C
chengduoZH 已提交
1782 1783 1784 1785
    const int batch_size = input_grad->dims()[0];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
C
chengduoZH 已提交
1786 1787 1788 1789 1790 1791 1792
    const int output_channels = output_grad.dims()[1];
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
    const int input_stride = input_depth * input_height * input_width;
    const int output_stride = output_depth * output_height * output_width;

C
chengduoZH 已提交
1793 1794
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
F
From00 已提交
1795
    T1* input_grad_data = context.template Alloc<T1>(input_grad);
C
chengduoZH 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817

    for (int n = 0; n < batch_size; ++n) {
      for (int c = 0; c < output_channels; ++c) {
        for (int pd = 0; pd < output_depth; ++pd) {
          for (int ph = 0; ph < output_height; ++ph) {
            for (int pw = 0; pw < output_width; ++pw) {
              const int output_idx =
                  (pd * output_height + ph) * output_width + pw;
              const int input_idx = static_cast<int>(mask_data[output_idx]);
              input_grad_data[input_idx] += output_grad_data[output_idx];
            }
          }
        }
        // offset
        input_grad_data += input_stride;
        output_grad_data += output_stride;
        mask_data += output_stride;
      }
    }
  }
};

F
From00 已提交
1818 1819 1820 1821 1822 1823
template class MaxPool3dWithIndexFunctor<CPUContext, float, int>;
template class MaxPool3dWithIndexGradFunctor<CPUContext, float, int>;
template class MaxPool3dWithIndexFunctor<CPUContext, double, int>;
template class MaxPool3dWithIndexGradFunctor<CPUContext, double, int>;
}  // namespace funcs
}  // namespace phi