pool_with_index_op.cc 12.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
F
From00 已提交
16 17 18 19 20
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
C
chengduoZH 已提交
21 22 23 24

namespace paddle {
namespace operators {

Y
Yang Yang 已提交
25
inline int MaxPoolOutputSize(int input_size, int filter_size, int padding,
C
chengduoZH 已提交
26
                             int stride) {
C
chengduoZH 已提交
27 28 29 30 31 32 33 34
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
chengduoZH 已提交
35
 protected:
36
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
37
      const framework::ExecutionContext &ctx) const override {
38 39 40
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
C
chengduoZH 已提交
41
  }
C
chengduoZH 已提交
42 43 44 45 46 47
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
chengduoZH 已提交
48
 protected:
49
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
50
      const framework::ExecutionContext &ctx) const override {
51 52 53
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
C
chengduoZH 已提交
54
  }
C
chengduoZH 已提交
55 56 57 58
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
59
  void Make() override {
C
chengduoZH 已提交
60 61
    AddInput(
        "X",
K
kexinzhao 已提交
62 63 64 65
        "(Tensor) The input tensor of pooling operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the image, "
        "and W is the width of the image.");
C
chengduoZH 已提交
66
    AddOutput("Out",
K
kexinzhao 已提交
67 68 69 70 71
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is "
              "the number of channels, H is the height of the image "
              "and W is the width of the image.");
C
chengduoZH 已提交
72
    AddOutput("Mask",
K
kexinzhao 已提交
73 74 75 76 77 78
              "(Tensor) The Mask tensor of pooling operator."
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the image, "
              "and W is the width of the image. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
79

C
fix bug  
chengduoZH 已提交
80
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
81 82
                              "(vector<int>) The pooling window size(height, "
                              "width) of pooling operator. "
C
chengduoZH 已提交
83
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
84 85
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
86
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
87
    AddAttr<bool>(
C
chengduoZH 已提交
88
        "global_pooling",
C
chengduoZH 已提交
89
        "(bool, default:false) Whether to use the global pooling. "
C
chengduoZH 已提交
90
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
91
        .SetDefault(false);
92 93 94 95 96 97 98 99
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
K
kexinzhao 已提交
100 101 102
    AddAttr<std::vector<int>>("strides",
                              "(vector<int>, default {1, 1}), strides(height, "
                              "width) of pooling operator.")
C
chengduoZH 已提交
103
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
104
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
105 106
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
107
        "(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
108
        "operator. "
C
chengduoZH 已提交
109
        "If global_pooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
110
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
111
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
112 113

    AddComment(R"DOC(
K
kexinzhao 已提交
114 115
MaxPool2d Operator.

C
chengduoZH 已提交
116
The maxPooling2d with index operation calculates the output and the mask
K
kexinzhao 已提交
117 118 119 120
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, 
and W is the width of the feature.
C
chengduoZH 已提交
121 122
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
123 124 125 126
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
127
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
128
  Output:
K
kexinzhao 已提交
129 130
       Out shape: $(N, C, H_{out}, W_{out})$
       Mask shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
131
  Where
K
kexinzhao 已提交
132
       $$
C
chengduoZH 已提交
133 134
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
135
       $$
136 137 138 139 140 141
  
  For adaptive = true:
       $$
       H_{out} = ksize[0]   W_{out} = ksize[1]
       $$
      
K
kexinzhao 已提交
142

C
chengduoZH 已提交
143 144 145 146 147 148
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
149
  void Make() override {
K
kexinzhao 已提交
150 151 152 153 154 155
    AddInput("X",
             "(Tensor) The input tensor of pooling operator. "
             "The format of input tensor is NCDHW, where N is batch size, C is "
             "the number of channels, and D, H and W are the depth, height and "
             "width of "
             "the image, respectively");
C
chengduoZH 已提交
156
    AddOutput("Out",
K
kexinzhao 已提交
157 158 159 160 161
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, "
              "and D, H and W are the depth, height and "
              "width of the image, respectively.");
C
chengduoZH 已提交
162
    AddOutput("Mask",
K
kexinzhao 已提交
163 164 165 166 167 168
              "(Tensor) The Mask tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, and "
              "D, H and W are the depth, height and width "
              "of the image, respectively. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
169

C
fix bug  
chengduoZH 已提交
170
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
171 172
                              "(vector<int>) The pooling window size(depth, "
                              "height, width) of pooling operator. "
C
chengduoZH 已提交
173
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
174 175
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
176
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
177
    AddAttr<bool>(
C
chengduoZH 已提交
178
        "global_pooling",
K
kexinzhao 已提交
179
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
180
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
181
        .SetDefault(false);
182 183 184 185 186 187 188 189
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
190
    AddAttr<std::vector<int>>("strides",
K
kexinzhao 已提交
191
                              "(vector<int>, default {1,1,1}), strides(depth, "
C
fix doc  
chengduoZH 已提交
192
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
193
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
194
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
195 196
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
197
        "(vector, default {0,0,0}), paddings(depth, "
K
kexinzhao 已提交
198
        "height, width) of pooling operator. "
C
chengduoZH 已提交
199
        "If global_pooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
200
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
201
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
202

C
chengduoZH 已提交
203
    AddComment(R"DOC(
K
kexinzhao 已提交
204 205
MaxPool3d Operator.

C
chengduoZH 已提交
206 207
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
K
kexinzhao 已提交
208 209 210 211
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
212
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
213 214 215 216
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
217
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
218
  Output:
K
kexinzhao 已提交
219 220
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
       Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
221
  Where
K
kexinzhao 已提交
222
       $$
C
chengduoZH 已提交
223 224 225
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
K
kexinzhao 已提交
226
       $$
227 228 229 230 231
  
  For adaptive = true:
       $$
       D_{out} = ksize[0]   H_{out} = ksize[1]   W_{out} = ksize[2]
       $$
K
kexinzhao 已提交
232

C
chengduoZH 已提交
233 234 235
)DOC");
  }
};
C
chengduoZH 已提交
236

237 238 239 240 241 242
template <typename T>
class MaxPoolWithIndexGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
243
  void Apply(GradOpPtr<T> op) const override {
244 245 246 247 248 249 250 251 252
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetAttrMap(this->Attrs());
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
  }
};

Z
Zeng Jinle 已提交
253
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
254
    MaxPoolWithIndexOpGradNoNeedBufferVarsInferer, "X");
255

C
chengduoZH 已提交
256 257 258 259 260
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

F
From00 已提交
261 262 263 264 265 266 267
DECLARE_INFER_SHAPE_FUNCTOR(max_pool2d_with_index,
                            MaxPool2dWithIndexInferShapeFunctor,
                            PD_INFER_META(phi::MaxPoolWithIndexInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(max_pool2d_with_index_grad,
                            MaxPool2dWithIndexGradInferShapeFunctor,
                            PD_INFER_META(phi::MaxPoolWithIndexGradInferMeta));

268 269 270
REGISTER_OPERATOR(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool2dWithIndexOpMaker,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
F
From00 已提交
271 272
                  ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>,
                  MaxPool2dWithIndexInferShapeFunctor);
273
REGISTER_OPERATOR(max_pool2d_with_index_grad, ops::MaxPoolWithIndexOpGrad,
F
From00 已提交
274 275
                  ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInferer,
                  MaxPool2dWithIndexGradInferShapeFunctor);
C
chengduoZH 已提交
276

F
From00 已提交
277 278 279 280 281 282
DECLARE_INFER_SHAPE_FUNCTOR(max_pool3d_with_index,
                            MaxPool3dWithIndexInferShapeFunctor,
                            PD_INFER_META(phi::MaxPoolWithIndexInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(max_pool3d_with_index_grad,
                            MaxPool3dWithIndexGradInferShapeFunctor,
                            PD_INFER_META(phi::MaxPoolWithIndexGradInferMeta));
C
chengduoZH 已提交
283

284 285 286
REGISTER_OPERATOR(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool3dWithIndexOpMaker,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
F
From00 已提交
287 288
                  ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>,
                  MaxPool3dWithIndexInferShapeFunctor);
289
REGISTER_OPERATOR(max_pool3d_with_index_grad, ops::MaxPoolWithIndexOpGrad,
F
From00 已提交
290 291
                  ops::MaxPoolWithIndexOpGradNoNeedBufferVarsInferer,
                  MaxPool3dWithIndexGradInferShapeFunctor);