role_maker.py 44.9 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14
"""Defination of Role Makers."""
D
dongdaxiang 已提交
15

16
from multiprocessing import Process, Manager
17
import paddle.fluid as fluid
X
xujiaqi01 已提交
18
import os
19
import time
20

T
tangwei12 已提交
21
__all__ = [
22 23 24 25 26 27 28
    'Role',
    'RoleMakerBase',
    'MPISymetricRoleMaker',
    'UserDefinedRoleMaker',
    'UserDefinedCollectiveRoleMaker',
    'PaddleCloudRoleMaker',
    'GeneralRoleMaker',
T
tangwei12 已提交
29 30
]

31

T
tangwei12 已提交
32 33
class Role:
    WORKER = 1
34
    SERVER = 2
T
Thunderbrook 已提交
35
    XPU = 3
36

D
dongdaxiang 已提交
37

38
class MockBarrier:
X
xujiaqi01 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    """
    MockBarrier is a empty impletation for barrier
    mock as a real barrier for never-barrier in a specific scenario
    """

    def barrier(self):
        """
        dummy barrier, do nothing
        """
        pass

    def barrier_all(self):
        """
        dummy all barrier, do nothing
        """
        pass

    def all_reduce(self, obj):
        """
        dummy all reduce, do nothing
        Args:
            obj(any): obj to do all reduce
        """
        return obj

    def all_gather(self, obj):
        """
        dummy all gather, do nothing
        Args:
            obj(any): obj to do all gather
        """
        return [obj]


73
class RoleMakerBase:
74 75 76 77 78 79 80
    """
    RoleMakerBase is a base class for assigning a role to current process
    in distributed training.
    A paddle developer can implement RoleMakerBase to design a role maker
    for worker or pserver assignment.
    """

D
dongdaxiang 已提交
81
    def __init__(self):
T
tangwei12 已提交
82 83
        self._worker_endpoints = []
        self._server_endpoints = []
D
dongdaxiang 已提交
84
        self._role_is_generated = False
T
tangwei12 已提交
85 86
        self._role = None
        self._current_id = -1
D
dongdaxiang 已提交
87

T
tangwei12 已提交
88
    def is_worker(self):
89 90 91
        """
        return is_worker() of current process
        """
D
dongdaxiang 已提交
92 93
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
94
    def is_server(self):
95 96 97
        """
        return is_server() of current process
        """
D
dongdaxiang 已提交
98 99
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
100
    def is_first_worker(self):
101
        """
T
tangwei12 已提交
102 103 104 105
        Check whether the node is the first instance of worker.
        Returns:
            bool: True if this is the first node of worker,
                  False if not.
106
        """
T
tangwei12 已提交
107
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
108

109 110 111 112 113 114 115 116 117
    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker number
        """
        raise NotImplementedError("Please implement this method in child class")

118 119 120
    def role_id(self):
        return self.worker_index() if self.is_worker() else self.server_index()

T
tangwei12 已提交
121
    def worker_index(self):
122
        """
T
tangwei12 已提交
123 124 125 126
        Get current worker id.

        Returns:
            int: node id
127
        """
T
tangwei12 已提交
128
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
129

T
tangwei12 已提交
130
    def server_index(self):
131
        """
T
tangwei12 已提交
132 133 134 135
        Get current server id.

        Returns:
            int: node id
136
        """
T
tangwei12 已提交
137
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
138

T
tangwei12 已提交
139
    def get_trainer_endpoints(self):
140
        """
T
tangwei12 已提交
141
        return trainer endpoints
142
        """
T
tangwei12 已提交
143 144 145 146 147 148 149
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        return pserver endpoints
        """
        return self._server_endpoints
D
dongdaxiang 已提交
150

T
tangwei12 已提交
151 152
    def to_string(self):
        return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
153 154 155 156 157
            self._role,
            self._current_id,
            self._worker_endpoints,
            self._server_endpoints,
        )
T
tangwei12 已提交
158

X
xujiaqi01 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        print("warning: RoleMakerBase does not have all gather.")
        return None

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        print("warning: RoleMakerBase does not have all reduce worker.")

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        print("warning: RoleMakerBase does not have barrier worker.")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        print("warning: RoleMakerBase does not have barrier all.")

D
dongdaxiang 已提交
196 197

class MPIRoleMaker(RoleMakerBase):
198 199 200 201 202
    """
    MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker
    mpi4py will be used if a developer inherits MPIRoleMaker
    """

D
dongdaxiang 已提交
203
    def __init__(self):
X
xujiaqi01 已提交
204
        """Init."""
205
        super().__init__()
D
dongdaxiang 已提交
206
        from mpi4py import MPI
207

D
dongdaxiang 已提交
208
        self.MPI = MPI
T
tangwei12 已提交
209 210
        self._comm = MPI.COMM_WORLD
        self._node_type_comm = None
D
dongdaxiang 已提交
211
        self._ips = None
T
tangwei12 已提交
212
        self._ip = None
D
dongdaxiang 已提交
213

214
    def _get_rank(self):
X
xujiaqi01 已提交
215
        """Return rank."""
D
dongdaxiang 已提交
216 217
        self._rank = self._comm.Get_rank()
        return self._rank
D
dongdaxiang 已提交
218

219
    def _get_size(self):
X
xujiaqi01 已提交
220
        """Return size."""
D
dongdaxiang 已提交
221 222
        self._size = self._comm.Get_size()
        return self._size
D
dongdaxiang 已提交
223

224
    def _all_gather(self, obj):
225 226 227
        """
        all_gather(obj) will call MPI's allgather function
        """
X
xjqbest 已提交
228
        self._barrier_all()
D
dongdaxiang 已提交
229
        return self._comm.allgather(obj)
D
dongdaxiang 已提交
230

X
xjqbest 已提交
231 232 233 234
    def _worker_gather(self, obj):
        """
        worker_gather(obj) will call MPI's allgather function
        """
T
tangwei12 已提交
235
        if self.is_worker():
D
dongdaxiang 已提交
236 237
            self._node_type_comm.barrier()
            return self._node_type_comm.allgather(obj)
X
xjqbest 已提交
238 239
        return None

240
    def _barrier_all(self):
241 242 243
        """
        barrier_all() will call MPI's barrier_all function
        """
D
dongdaxiang 已提交
244
        self._comm.barrier()
D
dongdaxiang 已提交
245

T
tangwei12 已提交
246 247 248 249
    def _finalize(self):
        """
        finalize the current MPI instance.
        """
250
        self.MPI.Finalize()
T
tangwei12 已提交
251

252
    def _get_ips(self):
253 254 255
        """
        collect current distributed job's ip list
        """
T
tangwei12 已提交
256 257
        if not self._ips:
            self._ips = self._comm.allgather(self.get_local_ip())
D
dongdaxiang 已提交
258
        return self._ips
D
dongdaxiang 已提交
259

T
tangwei12 已提交
260
    def get_local_ip(self):
X
xujiaqi01 已提交
261
        """Return get local ip."""
T
tangwei12 已提交
262
        import socket
263

T
tangwei12 已提交
264 265 266 267 268 269 270 271
        self._ip = socket.gethostbyname(socket.gethostname())
        return self._ip

    def generate_role(self):
        """
        generate_role() should be called to identify current process's role
        """
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
272 273 274


class MPISymetricRoleMaker(MPIRoleMaker):
275 276 277 278 279 280
    """
    MPISymetricRoleMaker is designed for worker and server assignment
    under MPI. Typically, a worker and a server node will be appointed
    on each physical node. This role maker can be only used under MPI.
    """

D
dongdaxiang 已提交
281
    def __init__(self):
X
xujiaqi01 已提交
282
        """Init."""
283
        super().__init__()
D
dongdaxiang 已提交
284 285
        self._node_type = None
        self._proc_per_node = 2
G
guru4elephant 已提交
286
        self._pserver_rand_port = 0
D
dongdaxiang 已提交
287

288
    def _check_role_generation(self):
X
xujiaqi01 已提交
289
        """Check whether role has been generated."""
D
dongdaxiang 已提交
290
        if not self._role_is_generated:
T
tangwei12 已提交
291
            raise NameError("generate_role() should be called first")
292 293
        return True

X
xujiaqi01 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            print("warning: current role is not worker in all_reduce_worker")
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()
        else:
            print("warning: current role is not worker in barrier_worker")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        if not self._role_is_generated:
            self.generate_role()
        self._comm.barrier()

T
tangwei12 已提交
344
    def is_first_worker(self):
345 346 347 348
        """
        return whether current process is the first worker assigned by role maker
        """
        if self._check_role_generation():
T
tangwei12 已提交
349
            return self.is_worker() and 0 == self.worker_index()
350
        return False
D
dongdaxiang 已提交
351

G
guru4elephant 已提交
352
    def get_pserver_endpoints(self):
X
xujiaqi01 已提交
353 354 355 356 357
        """
        get pserver endpoints
        Returns:
            endpoints(list): pserver endpoints
        """
G
guru4elephant 已提交
358 359
        if self._pserver_rand_port <= 0:
            import random
360

G
guru4elephant 已提交
361 362 363 364 365 366 367 368 369 370 371
            random.seed(self._server_num())
            # port will be randomly generated from 60001 to 63999
            # random seed is server num so that all nodes will get
            # the same port
            self._pserver_rand_port = random.randint(60001, 64000)
        endpoints = [
            x + ":" + str(self._pserver_rand_port)
            for x in self._server_endpoints
        ]
        return endpoints

372 373 374
    def worker_num(self):
        return self._worker_num()

T
tangwei12 已提交
375
    def is_worker(self):
376 377 378 379
        """
        return whether current process is worker assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
380
            return self._node_type == 1
381
        return False
D
dongdaxiang 已提交
382

T
tangwei12 已提交
383
    def is_server(self):
384 385 386 387
        """
        return whether current process is server assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
388
            return self._node_type == 0
389
        return False
D
dongdaxiang 已提交
390

391
    def _worker_num(self):
392 393 394 395
        """
        return the current number of worker
        """
        if self._check_role_generation():
396
            return int(self._get_size() / self._proc_per_node)
397
        return 0
D
dongdaxiang 已提交
398

399
    def _server_num(self):
400 401 402 403
        """
        return the current number of server
        """
        if self._check_role_generation():
404
            return int(self._get_size() / self._proc_per_node)
G
guru4elephant 已提交
405 406
        else:
            self.generate_role()
407
            return int(self._get_size() / self._proc_per_node)
D
dongdaxiang 已提交
408

T
tangwei12 已提交
409
    def worker_index(self):
410 411 412 413
        """
        return the index of worker
        """
        if self._check_role_generation():
414
            return int(self._rank / self._proc_per_node)
G
guru4elephant 已提交
415 416
        else:
            self.generate_role()
417
            return int(self._get_size() / 2)
D
dongdaxiang 已提交
418

T
tangwei12 已提交
419
    def server_index(self):
420 421 422 423
        """
        return the index of server
        """
        if self._check_role_generation():
424
            return int(self._rank / self._proc_per_node)
G
guru4elephant 已提交
425 426
        else:
            self.generate_role()
427
            return int(self._get_size() / self._proc_per_node)
D
dongdaxiang 已提交
428

X
xujiaqi01 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if mode == "sum":
            mode = self.MPI.SUM
        elif mode == "max":
            mode = self.MPI.MAX
        elif mode == "min":
            mode = self.MPI.MIN
        else:
            raise ValueError("unknown mode: %s" % mode)
        self._node_type_comm.Allreduce(input, output, op=mode)

451
    def _barrier_worker(self):
452 453 454 455
        """
        barrier all workers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
456
            if self.is_worker():
D
dongdaxiang 已提交
457
                self._node_type_comm.barrier()
G
guru4elephant 已提交
458 459
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
460

461
    def _barrier_server(self):
462 463 464 465
        """
        barrier all servers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
466
            if self.is_server():
D
dongdaxiang 已提交
467
                self._node_type_comm.barrier()
G
guru4elephant 已提交
468 469
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
470

T
tangwei12 已提交
471
    def generate_role(self):
472 473 474
        """
        generate currently process's role
        """
D
dongdaxiang 已提交
475
        if not self._role_is_generated:
476
            # TODO(guru4elephant): only allow to be called once
477 478
            self._worker_endpoints = self._get_ips()[1::2]
            self._server_endpoints = self._get_ips()[::2]
479

D
dongdaxiang 已提交
480 481
            if 0 == self._get_rank() % self._proc_per_node % 2:
                self._node_type = 0
482
            else:
D
dongdaxiang 已提交
483 484 485
                self._node_type = 1
            self._node_type_comm = self._comm.Split(self._node_type)
            self._role_is_generated = True
G
guru4elephant 已提交
486 487
        else:
            raise Exception("You should check role generation first")
488 489


490
class PaddleCloudRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
491 492 493 494 495
    """
    role maker for paddle cloud,
    base class is RoleMakerBase
    """

496
    def __init__(self, is_collective=False):
497
        super().__init__()
498
        self._role_is_generated = False
499
        self._is_collective = is_collective
500 501

    def generate_role(self):
X
xujiaqi01 已提交
502
        """Generate role."""
503
        if not self._role_is_generated:
504
            if not self._is_collective:
T
tangwei12 已提交
505
                try:
C
Chengmo 已提交
506 507 508
                    # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
                    # format: string(ip:port), eg. 127.0.0.1:6001
                    eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(
509 510
                        ","
                    )
T
tangwei12 已提交
511 512 513 514 515 516 517 518 519
                    # note that, we usually assign the same port to different ips
                    # if we run parameter server training in local mode
                    # port should be different in environment variables

                    trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
                    training_role = os.environ["TRAINING_ROLE"]

                    if training_role not in ["TRAINER", "PSERVER"]:
                        raise ValueError(
520 521
                            "TRAINING_ROLE must be PSERVER or TRAINER"
                        )
T
tangwei12 已提交
522 523 524 525 526 527 528

                    if training_role == "TRAINER":
                        role = Role.WORKER
                        current_id = int(os.environ["PADDLE_TRAINER_ID"])
                    elif training_role == "PSERVER":
                        role = Role.SERVER
                        cur_ip = os.environ["POD_IP"]
C
Chengmo 已提交
529 530 531
                        curr_port = os.environ["PADDLE_PORT"]
                        curr_endpoint = ":".join([cur_ip, curr_port])
                        current_id = eplist.index(curr_endpoint)
T
tangwei12 已提交
532 533
                    else:
                        raise ValueError(
534 535
                            "TRAINING_ROLE must be PSERVER or TRAINER"
                        )
T
tangwei12 已提交
536 537 538 539 540 541 542 543 544
                except ValueError as ve:
                    raise ValueError(
                        "something wrong with PaddleCloud, please check environment"
                    )

                self._trainers_num = trainers_num
                self._server_endpoints = eplist
                self._role = role
                self._current_id = current_id
545
            else:
546
                self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
547 548 549 550
                self._training_role = os.getenv(
                    "PADDLE_TRAINING_ROLE", "TRAINER"
                )
                assert self._training_role == "TRAINER"
551 552
                self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
                self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
553 554 555
                assert (
                    self._worker_endpoints is not None
                ), "can't find PADDLE_TRAINER_ENDPOINTS"
556 557 558
                self._worker_endpoints = self._worker_endpoints.split(",")
                self._trainers_num = len(self._worker_endpoints)

559 560
            self._role_is_generated = True

561 562 563 564 565
    def get_pserver_endpoints(self):
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

566 567 568
    def is_worker(self):
        if not self._role_is_generated:
            self.generate_role()
569 570 571
        return self._role == Role.WORKER

    def is_server(self):
572 573
        if not self._role_is_generated:
            self.generate_role()
574 575 576
        return self._role == Role.SERVER

    def is_first_worker(self):
577 578
        if not self._role_is_generated:
            self.generate_role()
579 580 581
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
582 583
        if not self._role_is_generated:
            self.generate_role()
584 585 586
        return self._current_id

    def server_index(self):
587 588
        if not self._role_is_generated:
            self.generate_role()
589 590 591
        return self._current_id

    def worker_num(self):
592 593
        if not self._role_is_generated:
            self.generate_role()
594
        return self._trainers_num
595 596


X
xujiaqi01 已提交
597 598 599
class GeneralRoleMaker(RoleMakerBase):
    """
    This role maker is for general use, you can set os.environ to customize:
T
tianshuo78520a 已提交
600 601
        PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ','
        PADDLE_TRAINER_ENDPOINTS     : all trainers' ip:port, separated by ','
X
xujiaqi01 已提交
602 603 604 605 606 607 608 609
        TRAINING_ROLE                : TRAINER or PSERVER
        PADDLE_TRAINER_ID            : current trainer id (only for trainer),
                                       it is index in PADDLE_TRAINER_ENDPOINTS
        PADDLE_PSERVER_ID            : current pserver id (only for pserver)
                                       it is index in PADDLE_PSERVERS_IP_PORT_LIST
    """

    def __init__(self, **kwargs):
610
        super().__init__()
X
xujiaqi01 已提交
611 612 613
        self._role_is_generated = False
        self._hdfs_name = kwargs.get("hdfs_name", "")
        self._hdfs_ugi = kwargs.get("hdfs_ugi", "")
614 615 616
        self._hdfs_path = kwargs.get("path", "").rstrip("/")
        self._init_timeout_seconds = kwargs.get("init_timeout_seconds", 3600)
        self._run_timeout_seconds = kwargs.get("run_timeout_seconds", 9999999)
617
        self._use_metric = kwargs.get("use_metric", False)
618
        ip_port = kwargs.get("http_ip_port", "")
619
        self._use_ps_gpu = kwargs.get("use_ps_gpu", False)
620 621 622 623 624 625 626 627 628 629 630
        self._http_ip_port = []
        self._http_server = None
        # if ip_port is not empty, it will use http instead of hdfs
        if ip_port != "":
            self._http_ip_port = ip_port.split(":")
            # it's for communication between processes
            self._manager = Manager()
            # global dict to store status
            self._http_server_d = self._manager.dict()
            # set running status of http server
            self._http_server_d["running"] = False
X
xujiaqi01 已提交
631
        self._iface = self.__get_default_iface()
632
        self._iface = "" if self._iface == "lo" else self._iface
X
xujiaqi01 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646
        # this environment variable can be empty
        self._prefix = os.getenv("SYS_JOB_ID", "")

    def generate_role(self):
        """
        generate role for general role maker
        """
        if not self._role_is_generated:
            eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
            training_role = os.environ["TRAINING_ROLE"]
            worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
            trainers_num = len(worker_endpoints)
            if training_role not in ["TRAINER", "PSERVER"]:
                raise ValueError("TRAINING_ROLE must be PSERVER or TRAINER")
X
xujiaqi01 已提交
647 648
            self._is_barrier_all = 1
            if "PADDLE_IS_BARRIER_ALL_ROLE" in os.environ:
649
                self._is_barrier_all = int(
650 651
                    os.environ["PADDLE_IS_BARRIER_ALL_ROLE"]
                )
X
xujiaqi01 已提交
652 653 654
            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
655 656 657 658
                if current_id == 0 and len(self._http_ip_port) != 0:
                    size_d = {
                        "trainer": len(worker_endpoints),
                        "pserver": len(eplist),
659
                        "all": len(worker_endpoints) + len(eplist),
660 661
                    }
                    # child process for http server
662 663 664 665
                    self._http_server = Process(
                        target=self.__start_kv_server,
                        args=(self._http_server_d, size_d),
                    )
666 667 668 669 670
                    self._http_server.daemon = True
                    # set running status to True
                    self._http_server_d["running"] = True
                    # start child process
                    self._http_server.start()
X
xujiaqi01 已提交
671 672
                self._node_type = 1
                self._cur_endpoint = worker_endpoints[current_id]
X
xujiaqi01 已提交
673 674 675 676 677 678
                if self._is_barrier_all:
                    gloo = fluid.core.Gloo()
                    gloo.set_rank(current_id)
                    gloo.set_size(len(worker_endpoints))
                    gloo.set_prefix(self._prefix)
                    gloo.set_iface(self._iface)
679 680 681
                    gloo.set_timeout_seconds(
                        self._init_timeout_seconds, self._run_timeout_seconds
                    )
X
xujiaqi01 已提交
682
                    if len(self._http_ip_port) != 0:
683 684 685 686 687
                        gloo.set_http_store(
                            self._http_ip_port[0],
                            int(self._http_ip_port[1]),
                            "trainer",
                        )
X
xujiaqi01 已提交
688
                    else:
689 690 691 692 693
                        gloo.set_hdfs_store(
                            self._hdfs_path + "/trainer",
                            self._hdfs_name,
                            self._hdfs_ugi,
                        )
X
xujiaqi01 已提交
694 695
                    gloo.init()
                    self._node_type_comm = gloo
696
                    if self._use_ps_gpu or self._use_metric:
697 698 699 700 701 702 703
                        Gloo_strategy = fluid.core.GlooParallelStrategy()
                        Gloo_strategy.rank = current_id
                        Gloo_strategy.rank_num = len(worker_endpoints)
                        Gloo_strategy.ip_address = self._http_ip_port[0]
                        Gloo_strategy.ip_port = int(self._http_ip_port[1])
                        Default_init_timeout_seconds = 3600
                        Default_run_timeout_seconds = 9999999
704 705 706
                        Gloo_strategy.init_seconds = (
                            Default_init_timeout_seconds
                        )
707 708 709
                        Gloo_strategy.run_seconds = Default_run_timeout_seconds
                        Gloo = fluid.core.GlooParallelContext(Gloo_strategy)
                        Gloo.init()
710
                else:
X
xujiaqi01 已提交
711
                    self._all_comm = MockBarrier()
X
xujiaqi01 已提交
712 713 714 715 716 717 718 719 720 721 722 723 724
            elif training_role == "PSERVER":
                role = Role.SERVER
                if os.environ.get("PADDLE_PSERVER_ID") is not None:
                    current_id = int(os.environ["PADDLE_PSERVER_ID"])
                    cur_endpoint = eplist[current_id]
                else:
                    # this is for compatible with paddlecloud
                    cur_ip = os.environ["POD_IP"]
                    cur_port = os.environ["PADDLE_PORT"]
                    cur_endpoint = ":".join([cur_ip, cur_port])
                    current_id = eplist.index(cur_endpoint)
                self._node_type = 0
                self._cur_endpoint = cur_endpoint
725
                gloo = fluid.core.Gloo()
726 727 728 729
                gloo.set_rank(current_id)
                gloo.set_size(len(eplist))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
730 731 732
                gloo.set_timeout_seconds(
                    self._init_timeout_seconds, self._run_timeout_seconds
                )
733
                if len(self._http_ip_port) != 0:
734 735 736 737 738
                    gloo.set_http_store(
                        self._http_ip_port[0],
                        int(self._http_ip_port[1]),
                        "pserver",
                    )
739
                else:
740 741 742 743 744
                    gloo.set_hdfs_store(
                        self._hdfs_path + "/pserver",
                        self._hdfs_name,
                        self._hdfs_ugi,
                    )
745
                gloo.init()
X
xujiaqi01 已提交
746 747
                self._node_type_comm = gloo

748
            gloo = fluid.core.Gloo()
X
xujiaqi01 已提交
749
            all_list = worker_endpoints + eplist
750 751 752 753
            gloo.set_rank(all_list.index(self._cur_endpoint))
            gloo.set_size(len(all_list))
            gloo.set_prefix(self._prefix)
            gloo.set_iface(self._iface)
754 755 756
            gloo.set_timeout_seconds(
                self._init_timeout_seconds, self._run_timeout_seconds
            )
757
            if len(self._http_ip_port) != 0:
758 759 760
                gloo.set_http_store(
                    self._http_ip_port[0], int(self._http_ip_port[1]), "all"
                )
761
            else:
762 763 764
                gloo.set_hdfs_store(
                    self._hdfs_path + "/all", self._hdfs_name, self._hdfs_ugi
                )
765
            gloo.init()
X
xujiaqi01 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
            self._all_comm = gloo
            self._trainers_num = trainers_num
            self._server_endpoints = eplist
            self._role = role
            self._current_id = current_id
            self._rank = all_list.index(self._cur_endpoint)
            self._size = len(all_list)
            self._worker_endpoints = worker_endpoints
            self._role_is_generated = True

    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self.is_worker():
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        self._barrier_worker()

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        self._barrier_all()

    def get_local_endpoint(self):
        """
        get local endpoint of current process
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._cur_endpoint

    def get_trainer_endpoints(self):
        """
        get endpoint of all trainers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        get endpoint of all pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

    def is_worker(self):
        """
        whether current process is worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER

    def is_server(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.SERVER

    def is_first_worker(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
        """
        get index of current worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def server_index(self):
        """
        get index of current server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def worker_num(self):
        """
        retrun the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_num()

    def server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_num()

    def _barrier_worker(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()

    def _barrier_all(self):
        """
        barrier all workers and servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        self._all_comm.barrier()

    def _barrier_server(self):
        """
        barrier all servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_server():
            self._node_type_comm.barrier()

    def _worker_num(self):
        """
        return the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._trainers_num

    def _server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return len(self._server_endpoints)

    def _finalize(self):
        """Default do nothing."""
        pass

    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between all workers

        Args:
            input(list|numpy.array): array of one dim
            output(list|numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        input_list = [i for i in input]
        ans = self._node_type_comm.all_reduce(input_list, mode)
        for i in range(len(ans)):
            output[i] = ans[i]

    def _all_gather(self, obj):
        """
        gather between all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        self._barrier_all()
        return self._all_comm.all_gather(obj)

    def _worker_gather(self, obj):
        """
        gather between all workers
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            return None
        self._barrier_worker()
        return self._node_type_comm.all_gather(obj)

    def _get_rank(self):
        """
        get current rank in all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._rank

    def _get_size(self):
        """
        get total num of all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._size

    def __get_default_iface(self):
        """
        get default physical interface
        """
        default1 = self.__get_default_iface_from_gateway()
        default2 = self.__get_default_iface_from_interfaces()
        return default2 if default1 == "lo" else default1

    def __get_default_iface_from_gateway(self):
        """
        get default physical interface
        """
1
123malin 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012
        res = os.popen("route -A inet").read().strip().split("\n")

        gateway_idx = None
        iface_idx = None
        for item in res:
            item = item.split()
            if "Gateway" in item and "Iface" in item:
                gateway_idx = item.index("Gateway")
                iface_idx = item.index("Iface")
1013
            elif gateway_idx is not None and iface_idx is not None:
1
123malin 已提交
1014 1015 1016
                gateway = None
                if len(item) > gateway_idx:
                    gateway = item[gateway_idx]
1017 1018 1019 1020 1021 1022
                if (
                    gateway
                    and gateway != '*'
                    and gateway != "0.0.0.0"
                    and len(item) > iface_idx
                ):
1
123malin 已提交
1023
                    return item[iface_idx]
X
xujiaqi01 已提交
1024 1025 1026 1027 1028 1029
        return "lo"

    def __get_default_iface_from_interfaces(self):
        """
        get default physical interface
        """
1030 1031 1032
        res = (
            os.popen("ip -f inet addr | awk NR%3==1").read().strip().split("\n")
        )
1
123malin 已提交
1033 1034 1035
        for item in res:
            if "BROADCAST" in item:
                return item.split(":")[1].strip()
X
xujiaqi01 已提交
1036 1037
        return "lo"

1038 1039
    def __start_kv_server(self, http_server_d, size_d):
        from paddle.fluid.incubate.fleet.utils.http_server import KVServer
1040

1041 1042 1043
        http_server = KVServer(int(self._http_ip_port[1]), size_d)
        http_server.start()
        wait_seconds = 5
1044
        while http_server_d.get("running", False):
1045 1046 1047
            time.sleep(wait_seconds)
        http_server.stop()

X
xujiaqi01 已提交
1048

T
Thunderbrook 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
class HeterRoleMaker(GeneralRoleMaker):
    """
    This role maker is for general use, you can set os.environ to customize:
        PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ','
        PADDLE_TRAINER_ENDPOINTS     : all trainers' ip:port, separated by ','
        TRAINING_ROLE                : TRAINER or PSERVER
        PADDLE_TRAINER_ID            : current trainer id (only for trainer),
                                       it is index in PADDLE_TRAINER_ENDPOINTS
        PADDLE_PSERVER_ID            : current pserver id (only for pserver)
                                       it is index in PADDLE_PSERVERS_IP_PORT_LIST
    """

    def generate_role(self):
        """
        generate role for general role maker
        """
        if not self._role_is_generated:
            eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
            training_role = os.environ["TRAINING_ROLE"]
            worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
            trainers_num = len(worker_endpoints)
            xpu_endpoints = os.environ["PADDLE_XPU_ENDPOINTS"].split(",")
            xpu_num = len(xpu_endpoints)
            if training_role not in ["TRAINER", "PSERVER", "XPU"]:
                raise ValueError(
1074 1075
                    "TRAINING_ROLE must be PSERVER or TRAINER or XPU"
                )
T
Thunderbrook 已提交
1076 1077 1078 1079 1080 1081
            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
                self._node_type = 1
                self._cur_endpoint = worker_endpoints[current_id]
                gloo = fluid.core.Gloo()
T
Thunderbrook 已提交
1082 1083 1084 1085 1086

                gloo.set_rank(current_id)
                gloo.set_size(len(worker_endpoints))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
1087 1088 1089
                gloo.set_timeout_seconds(
                    self._init_timeout_seconds, self._run_timeout_seconds
                )
T
Thunderbrook 已提交
1090
                gloo.set_hdfs_store(
1091 1092 1093 1094
                    self._hdfs_path.rstrip("/") + "/trainer",
                    self._hdfs_name,
                    self._hdfs_ugi,
                )
T
Thunderbrook 已提交
1095
                gloo.init()
T
Thunderbrook 已提交
1096 1097 1098 1099 1100 1101 1102
                self._node_type_comm = gloo
            elif training_role == "XPU":
                role = Role.XPU
                current_id = int(os.environ["PADDLE_XPU_ID"])
                self._node_type = 2
                self._cur_endpoint = xpu_endpoints[current_id]
                gloo = fluid.core.Gloo()
T
Thunderbrook 已提交
1103 1104 1105 1106 1107

                gloo.set_rank(current_id)
                gloo.set_size(len(xpu_endpoints))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
1108 1109 1110
                gloo.set_timeout_seconds(
                    self._init_timeout_seconds, self._run_timeout_seconds
                )
T
Thunderbrook 已提交
1111
                gloo.set_hdfs_store(
1112 1113 1114 1115
                    self._hdfs_path.rstrip("/") + "/xpu",
                    self._hdfs_name,
                    self._hdfs_ugi,
                )
T
Thunderbrook 已提交
1116
                gloo.init()
T
Thunderbrook 已提交
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
                self._node_type_comm = gloo
            elif training_role == "PSERVER":
                role = Role.SERVER
                if os.environ.get("PADDLE_PSERVER_ID") is not None:
                    current_id = int(os.environ["PADDLE_PSERVER_ID"])
                    cur_endpoint = eplist[current_id]
                else:
                    # this is for compatible with paddlecloud
                    cur_ip = os.environ["POD_IP"]
                    cur_port = os.environ["PADDLE_PORT"]
                    cur_endpoint = ":".join([cur_ip, cur_port])
                    current_id = eplist.index(cur_endpoint)
                self._node_type = 0
                self._cur_endpoint = cur_endpoint
                gloo = fluid.core.Gloo()
T
Thunderbrook 已提交
1132 1133 1134 1135
                gloo.set_rank(current_id)
                gloo.set_size(len(eplist))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
1136 1137 1138
                gloo.set_timeout_seconds(
                    self._init_timeout_seconds, self._run_timeout_seconds
                )
T
Thunderbrook 已提交
1139
                gloo.set_hdfs_store(
1140 1141 1142 1143
                    self._hdfs_path.rstrip("/") + "/pserver",
                    self._hdfs_name,
                    self._hdfs_ugi,
                )
T
Thunderbrook 已提交
1144
                gloo.init()
T
Thunderbrook 已提交
1145 1146 1147 1148 1149
                self._node_type_comm = gloo

            if training_role == "TRAINER" or training_role == "XPU":
                gloo = fluid.core.Gloo()
                heter_list = worker_endpoints + xpu_endpoints
T
Thunderbrook 已提交
1150 1151 1152 1153 1154

                gloo.set_rank(heter_list.index(self._cur_endpoint))
                gloo.set_size(len(heter_list))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
1155 1156 1157
                gloo.set_timeout_seconds(
                    self._init_timeout_seconds, self._run_timeout_seconds
                )
T
Thunderbrook 已提交
1158
                gloo.set_hdfs_store(
1159 1160 1161 1162
                    self._hdfs_path.rstrip("/") + "/heter",
                    self._hdfs_name,
                    self._hdfs_ugi,
                )
T
Thunderbrook 已提交
1163
                gloo.init()
T
Thunderbrook 已提交
1164 1165 1166 1167
                self._heter_comm = gloo

            gloo = fluid.core.Gloo()
            all_list = worker_endpoints + eplist + xpu_endpoints
T
Thunderbrook 已提交
1168 1169 1170 1171 1172

            gloo.set_rank(all_list.index(self._cur_endpoint))
            gloo.set_size(len(all_list))
            gloo.set_prefix(self._prefix)
            gloo.set_iface(self._iface)
1173 1174 1175
            gloo.set_timeout_seconds(
                self._init_timeout_seconds, self._run_timeout_seconds
            )
T
Thunderbrook 已提交
1176
            gloo.set_hdfs_store(
1177 1178 1179 1180
                self._hdfs_path.rstrip("/") + "/all",
                self._hdfs_name,
                self._hdfs_ugi,
            )
T
Thunderbrook 已提交
1181
            gloo.init()
T
Thunderbrook 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228

            self._all_comm = gloo
            self._trainers_num = trainers_num
            self._server_endpoints = eplist
            self._role = role
            self._current_id = current_id
            self._rank = all_list.index(self._cur_endpoint)
            self._size = len(all_list)
            self._worker_endpoints = worker_endpoints
            self._xpu_endpoints = xpu_endpoints
            self._role_is_generated = True

    def is_xpu(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.XPU

    def is_first_xpu(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.XPU and self._current_id == 0

    def _barrier_xpu(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_xpu():
            self._node_type_comm.barrier()

    def _barrier_heter(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_xpu() or self.is_worker:
            self._heter_comm.barrier()

    def xpu_num(self):
1229
        """ """
T
Thunderbrook 已提交
1230 1231 1232 1233 1234
        if not self._role_is_generated:
            self.generate_role()
        return len(self._xpu_endpoints)


1235
class UserDefinedRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
1236 1237 1238 1239 1240 1241
    """
    UserDefinedRoleMaker is designed for worker and server assignment
    under manual. Typically, a worker and a server node will be appointed
    on each physical node, It can be assign by user.
    """

1242 1243 1244 1245 1246 1247 1248
    def __init__(
        self,
        current_id=0,
        role=Role.WORKER,
        worker_num=0,
        server_endpoints=None,
    ):
1249
        super().__init__()
1250

1251 1252 1253 1254
        if not isinstance(server_endpoints, list):
            raise TypeError("server_endpoints must be as string list")
        elif len(server_endpoints) <= 0:
            raise ValueError(
1255 1256
                "the length of server_endpoints list must be greater than 0"
            )
1257 1258
        elif len(server_endpoints) != len(set(server_endpoints)):
            raise ValueError("server_endpoints can't have duplicate elements")
1259
        else:
1260 1261 1262 1263 1264 1265
            for server_endpoint in server_endpoints:
                if not isinstance(server_endpoint, str):
                    raise TypeError(
                        "every element in server_endpoints list must be as string"
                    )
            self._server_endpoints = server_endpoints
1266

T
tangwei12 已提交
1267
        if role != Role.WORKER and role != Role.SERVER:
1268 1269 1270 1271
            raise TypeError("role must be as Role")
        else:
            self._role = role

1272 1273 1274 1275 1276
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
                raise ValueError(
1277 1278
                    "current_id must be greater than or equal to 0"
                )
1279
            elif self._role == Role.SERVER and current_id >= len(
1280 1281
                server_endpoints
            ):
1282 1283 1284 1285 1286
                raise ValueError(
                    "if role is Role.SERVER, current_id must be less than or equal to len(server_endpoints) - 1"
                )
            self._current_id = current_id

1287 1288 1289
        if not isinstance(worker_num, int):
            raise TypeError("worker_num must be as int")
        else:
1290 1291
            if worker_num <= 0:
                raise ValueError("worker_num must be greater than 0")
1292 1293
            self._worker_num = worker_num

1294 1295 1296
    def generate_role(self):
        self._role_is_generated = True

T
tangwei12 已提交
1297 1298 1299 1300 1301
    def is_worker(self):
        return self._role == Role.WORKER

    def is_server(self):
        return self._role == Role.SERVER
1302

T
tangwei12 已提交
1303 1304
    def is_first_worker(self):
        return self._role == Role.WORKER and self._current_id == 0
1305

T
tangwei12 已提交
1306 1307
    def worker_index(self):
        return self._current_id
1308

T
tangwei12 已提交
1309 1310
    def server_index(self):
        return self._current_id
1311 1312 1313

    def worker_num(self):
        return self._worker_num
1314 1315 1316


class UserDefinedCollectiveRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
1317 1318 1319 1320 1321
    """
    UserDefinedCollectiveRoleMaker is designed for worker assignment
    under manual for collective mode.
    """

1322
    def __init__(self, current_id=0, worker_endpoints=None):
1323
        super().__init__()
1324

1325 1326 1327 1328
        if not isinstance(worker_endpoints, list):
            raise TypeError("worker_endpoints must be as string list")
        elif len(worker_endpoints) <= 0:
            raise ValueError(
1329 1330
                "the length of worker_endpoints list must be greater than 0"
            )
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
        elif len(worker_endpoints) != len(set(worker_endpoints)):
            raise ValueError("worker_endpoints can't have duplicate elements")
        else:
            for worker_endpoint in worker_endpoints:
                if not isinstance(worker_endpoint, str):
                    raise TypeError(
                        "every element in worker_endpoints list must be as string"
                    )
            self._worker_endpoints = worker_endpoints

1341 1342 1343 1344
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
1345
                raise ValueError(
1346 1347
                    "current_id must be greater than or equal to 0"
                )
1348 1349 1350 1351
            elif current_id >= len(worker_endpoints):
                raise ValueError(
                    "current_id must be less than or equal to len(worker_endpoints) - 1"
                )
1352 1353 1354 1355
            self._current_id = current_id

        self._worker_num = len(self._worker_endpoints)

1356 1357 1358
    def generate_role(self):
        self._role_is_generated = True

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
    def is_worker(self):
        return True

    def is_first_worker(self):
        return self._current_id == 0

    def worker_index(self):
        return self._current_id

    def worker_num(self):
        return self._worker_num