“999d0fdbef0c18024c89c9a5eee309177dc4e160”上不存在“paddle/phi/kernels/kthvalue_kernel.h”
role_maker.py 44.3 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14
"""Defination of Role Makers."""
D
dongdaxiang 已提交
15

16
from multiprocessing import Process, Manager
17
import paddle.fluid as fluid
X
xujiaqi01 已提交
18
import os
19
import time
20

T
tangwei12 已提交
21
__all__ = [
22
    'Role', 'RoleMakerBase', 'MPISymetricRoleMaker', 'UserDefinedRoleMaker',
X
xujiaqi01 已提交
23
    'UserDefinedCollectiveRoleMaker', 'PaddleCloudRoleMaker', 'GeneralRoleMaker'
T
tangwei12 已提交
24 25
]

26

T
tangwei12 已提交
27 28
class Role:
    WORKER = 1
29
    SERVER = 2
T
Thunderbrook 已提交
30
    XPU = 3
31

D
dongdaxiang 已提交
32

X
xujiaqi01 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class MockBarrier(object):
    """
    MockBarrier is a empty impletation for barrier
    mock as a real barrier for never-barrier in a specific scenario
    """

    def barrier(self):
        """
        dummy barrier, do nothing
        """
        pass

    def barrier_all(self):
        """
        dummy all barrier, do nothing
        """
        pass

    def all_reduce(self, obj):
        """
        dummy all reduce, do nothing
        Args:
            obj(any): obj to do all reduce
        """
        return obj

    def all_gather(self, obj):
        """
        dummy all gather, do nothing
        Args:
            obj(any): obj to do all gather
        """
        return [obj]


D
dongdaxiang 已提交
68
class RoleMakerBase(object):
69 70 71 72 73 74 75
    """
    RoleMakerBase is a base class for assigning a role to current process
    in distributed training.
    A paddle developer can implement RoleMakerBase to design a role maker
    for worker or pserver assignment.
    """

D
dongdaxiang 已提交
76
    def __init__(self):
T
tangwei12 已提交
77 78
        self._worker_endpoints = []
        self._server_endpoints = []
D
dongdaxiang 已提交
79
        self._role_is_generated = False
T
tangwei12 已提交
80 81
        self._role = None
        self._current_id = -1
D
dongdaxiang 已提交
82

T
tangwei12 已提交
83
    def is_worker(self):
84 85 86
        """
        return is_worker() of current process
        """
D
dongdaxiang 已提交
87 88
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
89
    def is_server(self):
90 91 92
        """
        return is_server() of current process
        """
D
dongdaxiang 已提交
93 94
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
95
    def is_first_worker(self):
96
        """
T
tangwei12 已提交
97 98 99 100
        Check whether the node is the first instance of worker.
        Returns:
            bool: True if this is the first node of worker,
                  False if not.
101
        """
T
tangwei12 已提交
102
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
103

104 105 106 107 108 109 110 111 112
    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker number
        """
        raise NotImplementedError("Please implement this method in child class")

113 114 115
    def role_id(self):
        return self.worker_index() if self.is_worker() else self.server_index()

T
tangwei12 已提交
116
    def worker_index(self):
117
        """
T
tangwei12 已提交
118 119 120 121
        Get current worker id.

        Returns:
            int: node id
122
        """
T
tangwei12 已提交
123
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
124

T
tangwei12 已提交
125
    def server_index(self):
126
        """
T
tangwei12 已提交
127 128 129 130
        Get current server id.

        Returns:
            int: node id
131
        """
T
tangwei12 已提交
132
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
133

T
tangwei12 已提交
134
    def get_trainer_endpoints(self):
135
        """
T
tangwei12 已提交
136
        return trainer endpoints
137
        """
T
tangwei12 已提交
138 139 140 141 142 143 144
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        return pserver endpoints
        """
        return self._server_endpoints
D
dongdaxiang 已提交
145

T
tangwei12 已提交
146 147 148 149 150
    def to_string(self):
        return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
            self._role, self._current_id, self._worker_endpoints,
            self._server_endpoints)

X
xujiaqi01 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        print("warning: RoleMakerBase does not have all gather.")
        return None

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        print("warning: RoleMakerBase does not have all reduce worker.")

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        print("warning: RoleMakerBase does not have barrier worker.")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        print("warning: RoleMakerBase does not have barrier all.")

D
dongdaxiang 已提交
188 189

class MPIRoleMaker(RoleMakerBase):
190 191 192 193 194
    """
    MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker
    mpi4py will be used if a developer inherits MPIRoleMaker
    """

D
dongdaxiang 已提交
195
    def __init__(self):
X
xujiaqi01 已提交
196
        """Init."""
X
xujiaqi01 已提交
197
        super(MPIRoleMaker, self).__init__()
D
dongdaxiang 已提交
198 199
        from mpi4py import MPI
        self.MPI = MPI
T
tangwei12 已提交
200 201
        self._comm = MPI.COMM_WORLD
        self._node_type_comm = None
D
dongdaxiang 已提交
202
        self._ips = None
T
tangwei12 已提交
203
        self._ip = None
D
dongdaxiang 已提交
204

205
    def _get_rank(self):
X
xujiaqi01 已提交
206
        """Return rank."""
D
dongdaxiang 已提交
207 208
        self._rank = self._comm.Get_rank()
        return self._rank
D
dongdaxiang 已提交
209

210
    def _get_size(self):
X
xujiaqi01 已提交
211
        """Return size."""
D
dongdaxiang 已提交
212 213
        self._size = self._comm.Get_size()
        return self._size
D
dongdaxiang 已提交
214

215
    def _all_gather(self, obj):
216 217 218
        """
        all_gather(obj) will call MPI's allgather function
        """
X
xjqbest 已提交
219
        self._barrier_all()
D
dongdaxiang 已提交
220
        return self._comm.allgather(obj)
D
dongdaxiang 已提交
221

X
xjqbest 已提交
222 223 224 225
    def _worker_gather(self, obj):
        """
        worker_gather(obj) will call MPI's allgather function
        """
T
tangwei12 已提交
226
        if self.is_worker():
D
dongdaxiang 已提交
227 228
            self._node_type_comm.barrier()
            return self._node_type_comm.allgather(obj)
X
xjqbest 已提交
229 230
        return None

231
    def _barrier_all(self):
232 233 234
        """
        barrier_all() will call MPI's barrier_all function
        """
D
dongdaxiang 已提交
235
        self._comm.barrier()
D
dongdaxiang 已提交
236

T
tangwei12 已提交
237 238 239 240
    def _finalize(self):
        """
        finalize the current MPI instance.
        """
241
        self.MPI.Finalize()
T
tangwei12 已提交
242

243
    def _get_ips(self):
244 245 246
        """
        collect current distributed job's ip list
        """
T
tangwei12 已提交
247 248
        if not self._ips:
            self._ips = self._comm.allgather(self.get_local_ip())
D
dongdaxiang 已提交
249
        return self._ips
D
dongdaxiang 已提交
250

T
tangwei12 已提交
251
    def get_local_ip(self):
X
xujiaqi01 已提交
252
        """Return get local ip."""
T
tangwei12 已提交
253 254 255 256 257 258 259 260 261
        import socket
        self._ip = socket.gethostbyname(socket.gethostname())
        return self._ip

    def generate_role(self):
        """
        generate_role() should be called to identify current process's role
        """
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
262 263 264


class MPISymetricRoleMaker(MPIRoleMaker):
265 266 267 268 269 270
    """
    MPISymetricRoleMaker is designed for worker and server assignment
    under MPI. Typically, a worker and a server node will be appointed
    on each physical node. This role maker can be only used under MPI.
    """

D
dongdaxiang 已提交
271
    def __init__(self):
X
xujiaqi01 已提交
272
        """Init."""
D
dongdaxiang 已提交
273
        super(MPISymetricRoleMaker, self).__init__()
D
dongdaxiang 已提交
274 275
        self._node_type = None
        self._proc_per_node = 2
G
guru4elephant 已提交
276
        self._pserver_rand_port = 0
D
dongdaxiang 已提交
277

278
    def _check_role_generation(self):
X
xujiaqi01 已提交
279
        """Check whether role has been generated."""
D
dongdaxiang 已提交
280
        if not self._role_is_generated:
T
tangwei12 已提交
281
            raise NameError("generate_role() should be called first")
282 283
        return True

X
xujiaqi01 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            print("warning: current role is not worker in all_reduce_worker")
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()
        else:
            print("warning: current role is not worker in barrier_worker")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        if not self._role_is_generated:
            self.generate_role()
        self._comm.barrier()

T
tangwei12 已提交
334
    def is_first_worker(self):
335 336 337 338
        """
        return whether current process is the first worker assigned by role maker
        """
        if self._check_role_generation():
T
tangwei12 已提交
339
            return self.is_worker() and 0 == self.worker_index()
340
        return False
D
dongdaxiang 已提交
341

G
guru4elephant 已提交
342
    def get_pserver_endpoints(self):
X
xujiaqi01 已提交
343 344 345 346 347
        """
        get pserver endpoints
        Returns:
            endpoints(list): pserver endpoints
        """
G
guru4elephant 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360
        if self._pserver_rand_port <= 0:
            import random
            random.seed(self._server_num())
            # port will be randomly generated from 60001 to 63999
            # random seed is server num so that all nodes will get
            # the same port
            self._pserver_rand_port = random.randint(60001, 64000)
        endpoints = [
            x + ":" + str(self._pserver_rand_port)
            for x in self._server_endpoints
        ]
        return endpoints

361 362 363
    def worker_num(self):
        return self._worker_num()

T
tangwei12 已提交
364
    def is_worker(self):
365 366 367 368
        """
        return whether current process is worker assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
369
            return self._node_type == 1
370
        return False
D
dongdaxiang 已提交
371

T
tangwei12 已提交
372
    def is_server(self):
373 374 375 376
        """
        return whether current process is server assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
377
            return self._node_type == 0
378
        return False
D
dongdaxiang 已提交
379

380
    def _worker_num(self):
381 382 383 384
        """
        return the current number of worker
        """
        if self._check_role_generation():
385
            return int(self._get_size() / self._proc_per_node)
386
        return 0
D
dongdaxiang 已提交
387

388
    def _server_num(self):
389 390 391 392
        """
        return the current number of server
        """
        if self._check_role_generation():
393
            return int(self._get_size() / self._proc_per_node)
G
guru4elephant 已提交
394 395
        else:
            self.generate_role()
396
            return int(self._get_size() / self._proc_per_node)
D
dongdaxiang 已提交
397

T
tangwei12 已提交
398
    def worker_index(self):
399 400 401 402
        """
        return the index of worker
        """
        if self._check_role_generation():
403
            return int(self._rank / self._proc_per_node)
G
guru4elephant 已提交
404 405
        else:
            self.generate_role()
406
            return int(self._get_size() / 2)
D
dongdaxiang 已提交
407

T
tangwei12 已提交
408
    def server_index(self):
409 410 411 412
        """
        return the index of server
        """
        if self._check_role_generation():
413
            return int(self._rank / self._proc_per_node)
G
guru4elephant 已提交
414 415
        else:
            self.generate_role()
416
            return int(self._get_size() / self._proc_per_node)
D
dongdaxiang 已提交
417

X
xujiaqi01 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if mode == "sum":
            mode = self.MPI.SUM
        elif mode == "max":
            mode = self.MPI.MAX
        elif mode == "min":
            mode = self.MPI.MIN
        else:
            raise ValueError("unknown mode: %s" % mode)
        self._node_type_comm.Allreduce(input, output, op=mode)

440
    def _barrier_worker(self):
441 442 443 444
        """
        barrier all workers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
445
            if self.is_worker():
D
dongdaxiang 已提交
446
                self._node_type_comm.barrier()
G
guru4elephant 已提交
447 448
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
449

450
    def _barrier_server(self):
451 452 453 454
        """
        barrier all servers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
455
            if self.is_server():
D
dongdaxiang 已提交
456
                self._node_type_comm.barrier()
G
guru4elephant 已提交
457 458
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
459

T
tangwei12 已提交
460
    def generate_role(self):
461 462 463
        """
        generate currently process's role
        """
D
dongdaxiang 已提交
464
        if not self._role_is_generated:
465
            # TODO(guru4elephant): only allow to be called once
466 467
            self._worker_endpoints = self._get_ips()[1::2]
            self._server_endpoints = self._get_ips()[::2]
468

D
dongdaxiang 已提交
469 470
            if 0 == self._get_rank() % self._proc_per_node % 2:
                self._node_type = 0
471
            else:
D
dongdaxiang 已提交
472 473 474
                self._node_type = 1
            self._node_type_comm = self._comm.Split(self._node_type)
            self._role_is_generated = True
G
guru4elephant 已提交
475 476
        else:
            raise Exception("You should check role generation first")
477 478


479
class PaddleCloudRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
480 481 482 483 484
    """
    role maker for paddle cloud,
    base class is RoleMakerBase
    """

485
    def __init__(self, is_collective=False):
486
        super(PaddleCloudRoleMaker, self).__init__()
487
        self._role_is_generated = False
488
        self._is_collective = is_collective
489 490

    def generate_role(self):
X
xujiaqi01 已提交
491
        """Generate role."""
492
        if not self._role_is_generated:
493
            if not self._is_collective:
T
tangwei12 已提交
494
                try:
C
Chengmo 已提交
495 496 497 498
                    # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
                    # format: string(ip:port), eg. 127.0.0.1:6001
                    eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(
                        ",")
T
tangwei12 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
                    # note that, we usually assign the same port to different ips
                    # if we run parameter server training in local mode
                    # port should be different in environment variables

                    trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
                    training_role = os.environ["TRAINING_ROLE"]

                    if training_role not in ["TRAINER", "PSERVER"]:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")

                    if training_role == "TRAINER":
                        role = Role.WORKER
                        current_id = int(os.environ["PADDLE_TRAINER_ID"])
                    elif training_role == "PSERVER":
                        role = Role.SERVER
                        cur_ip = os.environ["POD_IP"]
C
Chengmo 已提交
516 517 518
                        curr_port = os.environ["PADDLE_PORT"]
                        curr_endpoint = ":".join([cur_ip, curr_port])
                        current_id = eplist.index(curr_endpoint)
T
tangwei12 已提交
519 520 521 522 523 524 525 526 527 528 529 530
                    else:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")
                except ValueError as ve:
                    raise ValueError(
                        "something wrong with PaddleCloud, please check environment"
                    )

                self._trainers_num = trainers_num
                self._server_endpoints = eplist
                self._role = role
                self._current_id = current_id
531
            else:
532 533 534 535 536 537
                self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
                self._training_role = os.getenv("PADDLE_TRAINING_ROLE",
                                                "TRAINER")
                assert (self._training_role == "TRAINER")
                self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
                self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
538 539 540 541
                assert self._worker_endpoints is not None, "can't find PADDLE_TRAINER_ENDPOINTS"
                self._worker_endpoints = self._worker_endpoints.split(",")
                self._trainers_num = len(self._worker_endpoints)

542 543
            self._role_is_generated = True

544 545 546 547 548
    def get_pserver_endpoints(self):
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

549 550 551
    def is_worker(self):
        if not self._role_is_generated:
            self.generate_role()
552 553 554
        return self._role == Role.WORKER

    def is_server(self):
555 556
        if not self._role_is_generated:
            self.generate_role()
557 558 559
        return self._role == Role.SERVER

    def is_first_worker(self):
560 561
        if not self._role_is_generated:
            self.generate_role()
562 563 564
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
565 566
        if not self._role_is_generated:
            self.generate_role()
567 568 569
        return self._current_id

    def server_index(self):
570 571
        if not self._role_is_generated:
            self.generate_role()
572 573 574
        return self._current_id

    def worker_num(self):
575 576
        if not self._role_is_generated:
            self.generate_role()
577
        return self._trainers_num
578 579


X
xujiaqi01 已提交
580 581 582
class GeneralRoleMaker(RoleMakerBase):
    """
    This role maker is for general use, you can set os.environ to customize:
T
tianshuo78520a 已提交
583 584
        PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ','
        PADDLE_TRAINER_ENDPOINTS     : all trainers' ip:port, separated by ','
X
xujiaqi01 已提交
585 586 587 588 589 590 591 592
        TRAINING_ROLE                : TRAINER or PSERVER
        PADDLE_TRAINER_ID            : current trainer id (only for trainer),
                                       it is index in PADDLE_TRAINER_ENDPOINTS
        PADDLE_PSERVER_ID            : current pserver id (only for pserver)
                                       it is index in PADDLE_PSERVERS_IP_PORT_LIST
    """

    def __init__(self, **kwargs):
J
Jiangxinz 已提交
593
        super(GeneralRoleMaker, self).__init__()
X
xujiaqi01 已提交
594 595 596
        self._role_is_generated = False
        self._hdfs_name = kwargs.get("hdfs_name", "")
        self._hdfs_ugi = kwargs.get("hdfs_ugi", "")
597 598 599
        self._hdfs_path = kwargs.get("path", "").rstrip("/")
        self._init_timeout_seconds = kwargs.get("init_timeout_seconds", 3600)
        self._run_timeout_seconds = kwargs.get("run_timeout_seconds", 9999999)
600
        self._use_metric = kwargs.get("use_metric", False)
601
        ip_port = kwargs.get("http_ip_port", "")
602
        self._use_ps_gpu = kwargs.get("use_ps_gpu", False)
603 604 605 606 607 608 609 610 611 612 613
        self._http_ip_port = []
        self._http_server = None
        # if ip_port is not empty, it will use http instead of hdfs
        if ip_port != "":
            self._http_ip_port = ip_port.split(":")
            # it's for communication between processes
            self._manager = Manager()
            # global dict to store status
            self._http_server_d = self._manager.dict()
            # set running status of http server
            self._http_server_d["running"] = False
X
xujiaqi01 已提交
614
        self._iface = self.__get_default_iface()
615
        self._iface = "" if self._iface == "lo" else self._iface
X
xujiaqi01 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629
        # this environment variable can be empty
        self._prefix = os.getenv("SYS_JOB_ID", "")

    def generate_role(self):
        """
        generate role for general role maker
        """
        if not self._role_is_generated:
            eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
            training_role = os.environ["TRAINING_ROLE"]
            worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
            trainers_num = len(worker_endpoints)
            if training_role not in ["TRAINER", "PSERVER"]:
                raise ValueError("TRAINING_ROLE must be PSERVER or TRAINER")
X
xujiaqi01 已提交
630 631
            self._is_barrier_all = 1
            if "PADDLE_IS_BARRIER_ALL_ROLE" in os.environ:
632 633
                self._is_barrier_all = int(
                    os.environ["PADDLE_IS_BARRIER_ALL_ROLE"])
X
xujiaqi01 已提交
634 635 636
            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
637 638 639 640 641 642 643
                if current_id == 0 and len(self._http_ip_port) != 0:
                    size_d = {
                        "trainer": len(worker_endpoints),
                        "pserver": len(eplist),
                        "all": len(worker_endpoints) + len(eplist)
                    }
                    # child process for http server
644 645 646
                    self._http_server = Process(target=self.__start_kv_server,
                                                args=(self._http_server_d,
                                                      size_d))
647 648 649 650 651
                    self._http_server.daemon = True
                    # set running status to True
                    self._http_server_d["running"] = True
                    # start child process
                    self._http_server.start()
X
xujiaqi01 已提交
652 653
                self._node_type = 1
                self._cur_endpoint = worker_endpoints[current_id]
X
xujiaqi01 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
                if self._is_barrier_all:
                    gloo = fluid.core.Gloo()
                    gloo.set_rank(current_id)
                    gloo.set_size(len(worker_endpoints))
                    gloo.set_prefix(self._prefix)
                    gloo.set_iface(self._iface)
                    gloo.set_timeout_seconds(self._init_timeout_seconds,
                                             self._run_timeout_seconds)
                    if len(self._http_ip_port) != 0:
                        gloo.set_http_store(self._http_ip_port[0],
                                            int(self._http_ip_port[1]),
                                            "trainer")
                    else:
                        gloo.set_hdfs_store(self._hdfs_path + "/trainer",
                                            self._hdfs_name, self._hdfs_ugi)
                    gloo.init()
                    self._node_type_comm = gloo
671
                    if self._use_ps_gpu or self._use_metric:
672 673 674 675 676 677 678 679 680 681 682
                        Gloo_strategy = fluid.core.GlooParallelStrategy()
                        Gloo_strategy.rank = current_id
                        Gloo_strategy.rank_num = len(worker_endpoints)
                        Gloo_strategy.ip_address = self._http_ip_port[0]
                        Gloo_strategy.ip_port = int(self._http_ip_port[1])
                        Default_init_timeout_seconds = 3600
                        Default_run_timeout_seconds = 9999999
                        Gloo_strategy.init_seconds = Default_init_timeout_seconds
                        Gloo_strategy.run_seconds = Default_run_timeout_seconds
                        Gloo = fluid.core.GlooParallelContext(Gloo_strategy)
                        Gloo.init()
683
                else:
X
xujiaqi01 已提交
684
                    self._all_comm = MockBarrier()
X
xujiaqi01 已提交
685 686 687 688 689 690 691 692 693 694 695 696 697
            elif training_role == "PSERVER":
                role = Role.SERVER
                if os.environ.get("PADDLE_PSERVER_ID") is not None:
                    current_id = int(os.environ["PADDLE_PSERVER_ID"])
                    cur_endpoint = eplist[current_id]
                else:
                    # this is for compatible with paddlecloud
                    cur_ip = os.environ["POD_IP"]
                    cur_port = os.environ["PADDLE_PORT"]
                    cur_endpoint = ":".join([cur_ip, cur_port])
                    current_id = eplist.index(cur_endpoint)
                self._node_type = 0
                self._cur_endpoint = cur_endpoint
698
                gloo = fluid.core.Gloo()
699 700 701 702 703 704 705 706 707 708 709 710 711
                gloo.set_rank(current_id)
                gloo.set_size(len(eplist))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
                gloo.set_timeout_seconds(self._init_timeout_seconds,
                                         self._run_timeout_seconds)
                if len(self._http_ip_port) != 0:
                    gloo.set_http_store(self._http_ip_port[0],
                                        int(self._http_ip_port[1]), "pserver")
                else:
                    gloo.set_hdfs_store(self._hdfs_path + "/pserver",
                                        self._hdfs_name, self._hdfs_ugi)
                gloo.init()
X
xujiaqi01 已提交
712 713
                self._node_type_comm = gloo

714
            gloo = fluid.core.Gloo()
X
xujiaqi01 已提交
715
            all_list = worker_endpoints + eplist
716 717 718 719 720 721 722 723 724 725 726 727 728
            gloo.set_rank(all_list.index(self._cur_endpoint))
            gloo.set_size(len(all_list))
            gloo.set_prefix(self._prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            if len(self._http_ip_port) != 0:
                gloo.set_http_store(self._http_ip_port[0],
                                    int(self._http_ip_port[1]), "all")
            else:
                gloo.set_hdfs_store(self._hdfs_path + "/all", self._hdfs_name,
                                    self._hdfs_ugi)
            gloo.init()
X
xujiaqi01 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
            self._all_comm = gloo
            self._trainers_num = trainers_num
            self._server_endpoints = eplist
            self._role = role
            self._current_id = current_id
            self._rank = all_list.index(self._cur_endpoint)
            self._size = len(all_list)
            self._worker_endpoints = worker_endpoints
            self._role_is_generated = True

    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self.is_worker():
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        self._barrier_worker()

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        self._barrier_all()

    def get_local_endpoint(self):
        """
        get local endpoint of current process
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._cur_endpoint

    def get_trainer_endpoints(self):
        """
        get endpoint of all trainers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        get endpoint of all pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

    def is_worker(self):
        """
        whether current process is worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER

    def is_server(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.SERVER

    def is_first_worker(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
        """
        get index of current worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def server_index(self):
        """
        get index of current server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def worker_num(self):
        """
        retrun the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_num()

    def server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_num()

    def _barrier_worker(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()

    def _barrier_all(self):
        """
        barrier all workers and servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        self._all_comm.barrier()

    def _barrier_server(self):
        """
        barrier all servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_server():
            self._node_type_comm.barrier()

    def _worker_num(self):
        """
        return the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._trainers_num

    def _server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return len(self._server_endpoints)

    def _finalize(self):
        """Default do nothing."""
        pass

    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between all workers

        Args:
            input(list|numpy.array): array of one dim
            output(list|numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        input_list = [i for i in input]
        ans = self._node_type_comm.all_reduce(input_list, mode)
        for i in range(len(ans)):
            output[i] = ans[i]

    def _all_gather(self, obj):
        """
        gather between all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        self._barrier_all()
        return self._all_comm.all_gather(obj)

    def _worker_gather(self, obj):
        """
        gather between all workers
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            return None
        self._barrier_worker()
        return self._node_type_comm.all_gather(obj)

    def _get_rank(self):
        """
        get current rank in all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._rank

    def _get_size(self):
        """
        get total num of all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._size

    def __get_default_iface(self):
        """
        get default physical interface
        """
        default1 = self.__get_default_iface_from_gateway()
        default2 = self.__get_default_iface_from_interfaces()
        return default2 if default1 == "lo" else default1

    def __get_default_iface_from_gateway(self):
        """
        get default physical interface
        """
1
123malin 已提交
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
        res = os.popen("route -A inet").read().strip().split("\n")

        gateway_idx = None
        iface_idx = None
        for item in res:
            item = item.split()
            if "Gateway" in item and "Iface" in item:
                gateway_idx = item.index("Gateway")
                iface_idx = item.index("Iface")
            elif gateway_idx != None and iface_idx != None:
                gateway = None
                if len(item) > gateway_idx:
                    gateway = item[gateway_idx]
                if gateway and gateway != '*' and gateway != "0.0.0.0" and len(
                        item) > iface_idx:
                    return item[iface_idx]
X
xujiaqi01 已提交
983 984 985 986 987 988
        return "lo"

    def __get_default_iface_from_interfaces(self):
        """
        get default physical interface
        """
1
123malin 已提交
989 990 991 992 993
        res = os.popen("ip -f inet addr | awk NR%3==1").read().strip().split(
            "\n")
        for item in res:
            if "BROADCAST" in item:
                return item.split(":")[1].strip()
X
xujiaqi01 已提交
994 995
        return "lo"

996 997 998 999 1000
    def __start_kv_server(self, http_server_d, size_d):
        from paddle.fluid.incubate.fleet.utils.http_server import KVServer
        http_server = KVServer(int(self._http_ip_port[1]), size_d)
        http_server.start()
        wait_seconds = 5
1001
        while http_server_d.get("running", False):
1002 1003 1004
            time.sleep(wait_seconds)
        http_server.stop()

X
xujiaqi01 已提交
1005

T
Thunderbrook 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
class HeterRoleMaker(GeneralRoleMaker):
    """
    This role maker is for general use, you can set os.environ to customize:
        PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ','
        PADDLE_TRAINER_ENDPOINTS     : all trainers' ip:port, separated by ','
        TRAINING_ROLE                : TRAINER or PSERVER
        PADDLE_TRAINER_ID            : current trainer id (only for trainer),
                                       it is index in PADDLE_TRAINER_ENDPOINTS
        PADDLE_PSERVER_ID            : current pserver id (only for pserver)
                                       it is index in PADDLE_PSERVERS_IP_PORT_LIST
    """

    def generate_role(self):
        """
        generate role for general role maker
        """
        if not self._role_is_generated:
            eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
            training_role = os.environ["TRAINING_ROLE"]
            worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
            trainers_num = len(worker_endpoints)
            xpu_endpoints = os.environ["PADDLE_XPU_ENDPOINTS"].split(",")
            xpu_num = len(xpu_endpoints)
            if training_role not in ["TRAINER", "PSERVER", "XPU"]:
                raise ValueError(
                    "TRAINING_ROLE must be PSERVER or TRAINER or XPU")
            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
                self._node_type = 1
                self._cur_endpoint = worker_endpoints[current_id]
                gloo = fluid.core.Gloo()
T
Thunderbrook 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048

                gloo.set_rank(current_id)
                gloo.set_size(len(worker_endpoints))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
                gloo.set_timeout_seconds(self._init_timeout_seconds,
                                         self._run_timeout_seconds)
                gloo.set_hdfs_store(
                    self._hdfs_path.rstrip("/") + "/trainer", self._hdfs_name,
                    self._hdfs_ugi)
                gloo.init()
T
Thunderbrook 已提交
1049 1050 1051 1052 1053 1054 1055
                self._node_type_comm = gloo
            elif training_role == "XPU":
                role = Role.XPU
                current_id = int(os.environ["PADDLE_XPU_ID"])
                self._node_type = 2
                self._cur_endpoint = xpu_endpoints[current_id]
                gloo = fluid.core.Gloo()
T
Thunderbrook 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

                gloo.set_rank(current_id)
                gloo.set_size(len(xpu_endpoints))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
                gloo.set_timeout_seconds(self._init_timeout_seconds,
                                         self._run_timeout_seconds)
                gloo.set_hdfs_store(
                    self._hdfs_path.rstrip("/") + "/xpu", self._hdfs_name,
                    self._hdfs_ugi)
                gloo.init()
T
Thunderbrook 已提交
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
                self._node_type_comm = gloo
            elif training_role == "PSERVER":
                role = Role.SERVER
                if os.environ.get("PADDLE_PSERVER_ID") is not None:
                    current_id = int(os.environ["PADDLE_PSERVER_ID"])
                    cur_endpoint = eplist[current_id]
                else:
                    # this is for compatible with paddlecloud
                    cur_ip = os.environ["POD_IP"]
                    cur_port = os.environ["PADDLE_PORT"]
                    cur_endpoint = ":".join([cur_ip, cur_port])
                    current_id = eplist.index(cur_endpoint)
                self._node_type = 0
                self._cur_endpoint = cur_endpoint
                gloo = fluid.core.Gloo()
T
Thunderbrook 已提交
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
                gloo.set_rank(current_id)
                gloo.set_size(len(eplist))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
                gloo.set_timeout_seconds(self._init_timeout_seconds,
                                         self._run_timeout_seconds)
                gloo.set_hdfs_store(
                    self._hdfs_path.rstrip("/") + "/pserver", self._hdfs_name,
                    self._hdfs_ugi)
                gloo.init()
T
Thunderbrook 已提交
1092 1093 1094 1095 1096
                self._node_type_comm = gloo

            if training_role == "TRAINER" or training_role == "XPU":
                gloo = fluid.core.Gloo()
                heter_list = worker_endpoints + xpu_endpoints
T
Thunderbrook 已提交
1097 1098 1099 1100 1101 1102 1103 1104

                gloo.set_rank(heter_list.index(self._cur_endpoint))
                gloo.set_size(len(heter_list))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
                gloo.set_timeout_seconds(self._init_timeout_seconds,
                                         self._run_timeout_seconds)
                gloo.set_hdfs_store(
T
Thunderbrook 已提交
1105
                    self._hdfs_path.rstrip("/") + "/heter", self._hdfs_name,
T
Thunderbrook 已提交
1106 1107
                    self._hdfs_ugi)
                gloo.init()
T
Thunderbrook 已提交
1108 1109 1110 1111
                self._heter_comm = gloo

            gloo = fluid.core.Gloo()
            all_list = worker_endpoints + eplist + xpu_endpoints
T
Thunderbrook 已提交
1112 1113 1114 1115 1116 1117 1118 1119

            gloo.set_rank(all_list.index(self._cur_endpoint))
            gloo.set_size(len(all_list))
            gloo.set_prefix(self._prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            gloo.set_hdfs_store(
T
Thunderbrook 已提交
1120
                self._hdfs_path.rstrip("/") + "/all", self._hdfs_name,
T
Thunderbrook 已提交
1121 1122
                self._hdfs_ugi)
            gloo.init()
T
Thunderbrook 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

            self._all_comm = gloo
            self._trainers_num = trainers_num
            self._server_endpoints = eplist
            self._role = role
            self._current_id = current_id
            self._rank = all_list.index(self._cur_endpoint)
            self._size = len(all_list)
            self._worker_endpoints = worker_endpoints
            self._xpu_endpoints = xpu_endpoints
            self._role_is_generated = True

    def is_xpu(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.XPU

    def is_first_xpu(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.XPU and self._current_id == 0

    def _barrier_xpu(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_xpu():
            self._node_type_comm.barrier()

    def _barrier_heter(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_xpu() or self.is_worker:
            self._heter_comm.barrier()

    def xpu_num(self):
        """
        """
        if not self._role_is_generated:
            self.generate_role()
        return len(self._xpu_endpoints)


1177
class UserDefinedRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
1178 1179 1180 1181 1182 1183
    """
    UserDefinedRoleMaker is designed for worker and server assignment
    under manual. Typically, a worker and a server node will be appointed
    on each physical node, It can be assign by user.
    """

1184 1185
    def __init__(self,
                 current_id=0,
T
tangwei12 已提交
1186 1187 1188
                 role=Role.WORKER,
                 worker_num=0,
                 server_endpoints=None):
1189 1190
        super(UserDefinedRoleMaker, self).__init__()

1191 1192 1193 1194 1195 1196 1197
        if not isinstance(server_endpoints, list):
            raise TypeError("server_endpoints must be as string list")
        elif len(server_endpoints) <= 0:
            raise ValueError(
                "the length of server_endpoints list must be greater than 0")
        elif len(server_endpoints) != len(set(server_endpoints)):
            raise ValueError("server_endpoints can't have duplicate elements")
1198
        else:
1199 1200 1201 1202 1203 1204
            for server_endpoint in server_endpoints:
                if not isinstance(server_endpoint, str):
                    raise TypeError(
                        "every element in server_endpoints list must be as string"
                    )
            self._server_endpoints = server_endpoints
1205

T
tangwei12 已提交
1206
        if role != Role.WORKER and role != Role.SERVER:
1207 1208 1209 1210
            raise TypeError("role must be as Role")
        else:
            self._role = role

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif self._role == Role.SERVER and current_id >= len(
                    server_endpoints):
                raise ValueError(
                    "if role is Role.SERVER, current_id must be less than or equal to len(server_endpoints) - 1"
                )
            self._current_id = current_id

1224 1225 1226
        if not isinstance(worker_num, int):
            raise TypeError("worker_num must be as int")
        else:
1227 1228
            if worker_num <= 0:
                raise ValueError("worker_num must be greater than 0")
1229 1230
            self._worker_num = worker_num

1231 1232 1233
    def generate_role(self):
        self._role_is_generated = True

T
tangwei12 已提交
1234 1235 1236 1237 1238
    def is_worker(self):
        return self._role == Role.WORKER

    def is_server(self):
        return self._role == Role.SERVER
1239

T
tangwei12 已提交
1240 1241
    def is_first_worker(self):
        return self._role == Role.WORKER and self._current_id == 0
1242

T
tangwei12 已提交
1243 1244
    def worker_index(self):
        return self._current_id
1245

T
tangwei12 已提交
1246 1247
    def server_index(self):
        return self._current_id
1248 1249 1250

    def worker_num(self):
        return self._worker_num
1251 1252 1253


class UserDefinedCollectiveRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
1254 1255 1256 1257 1258
    """
    UserDefinedCollectiveRoleMaker is designed for worker assignment
    under manual for collective mode.
    """

1259 1260 1261
    def __init__(self, current_id=0, worker_endpoints=None):
        super(UserDefinedCollectiveRoleMaker, self).__init__()

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
        if not isinstance(worker_endpoints, list):
            raise TypeError("worker_endpoints must be as string list")
        elif len(worker_endpoints) <= 0:
            raise ValueError(
                "the length of worker_endpoints list must be greater than 0")
        elif len(worker_endpoints) != len(set(worker_endpoints)):
            raise ValueError("worker_endpoints can't have duplicate elements")
        else:
            for worker_endpoint in worker_endpoints:
                if not isinstance(worker_endpoint, str):
                    raise TypeError(
                        "every element in worker_endpoints list must be as string"
                    )
            self._worker_endpoints = worker_endpoints

1277 1278 1279 1280
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
1281 1282 1283 1284 1285 1286
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif current_id >= len(worker_endpoints):
                raise ValueError(
                    "current_id must be less than or equal to len(worker_endpoints) - 1"
                )
1287 1288 1289 1290
            self._current_id = current_id

        self._worker_num = len(self._worker_endpoints)

1291 1292 1293
    def generate_role(self):
        self._role_is_generated = True

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    def is_worker(self):
        return True

    def is_first_worker(self):
        return self._current_id == 0

    def worker_index(self):
        return self._current_id

    def worker_num(self):
        return self._worker_num