test_conv2d_transpose_op.py 30.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
deconv  
zchen0211 已提交
17 18
import unittest
import numpy as np
19

20
import paddle.fluid.core as core
21
import paddle.fluid as fluid
22
from op_test import OpTest
Z
deconv  
zchen0211 已提交
23 24


C
chengduoZH 已提交
25
def conv2dtranspose_forward_naive(input_, filter_, attrs):
26 27 28 29 30 31 32 33
    padding_algorithm = attrs['padding_algorithm']
    if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
        raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                         "It can only be 'SAME' or 'VALID'." %
                         str(padding_algorithm))

    if attrs['data_format'] == 'NHWC':
        input_ = np.transpose(input_, [0, 3, 1, 2])
Z
deconv  
zchen0211 已提交
34
    in_n, in_c, in_h, in_w = input_.shape
Y
Yibing Liu 已提交
35 36
    f_c, f_out_c, f_h, f_w = filter_.shape
    groups = attrs['groups']
Z
deconv  
zchen0211 已提交
37
    assert in_c == f_c
Y
Yibing Liu 已提交
38
    out_c = f_out_c * groups
M
minqiyang 已提交
39
    sub_in_c = in_c // groups
Z
deconv  
zchen0211 已提交
40

C
chengduoZH 已提交
41 42
    stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[
        'dilations']
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

    # update pad and dilation
    def _get_padding_with_SAME(input_shape, kernel_size, kernel_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(
                input_shape, kernel_size, kernel_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max((
                (out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    ksize = filter_.shape[2:4]
    if padding_algorithm == "VALID":
        pad = [0, 0, 0, 0]
    elif padding_algorithm == "SAME":
62 63
        dilations = [1, 1]
        input_data_shape = input_.shape[2:4]
64 65 66 67 68 69 70 71
        pad = _get_padding_with_SAME(input_data_shape, ksize, stride)

    pad_h_0, pad_h_1 = pad[0], pad[0]
    pad_w_0, pad_w_1 = pad[1], pad[1]
    if len(pad) == 4:
        pad_h_0, pad_h_1 = pad[0], pad[1]
        pad_w_0, pad_w_1 = pad[2], pad[3]

C
chengduoZH 已提交
72 73 74 75
    d_bolck_h = dilations[0] * (f_h - 1) + 1
    d_bolck_w = dilations[1] * (f_w - 1) + 1
    out_h = (in_h - 1) * stride[0] + d_bolck_h
    out_w = (in_w - 1) * stride[1] + d_bolck_w
76 77
    if 'output_size' in attrs:
        output_size = attrs['output_size']
78 79
        out_h = output_size[0] + pad_h_0 + pad_h_1
        out_w = output_size[1] + pad_w_0 + pad_w_1
Z
deconv  
zchen0211 已提交
80

81
    out = np.zeros((in_n, out_c, out_h, out_w), dtype=input_.dtype)
Z
deconv  
zchen0211 已提交
82 83 84 85

    for n in range(in_n):
        for i in range(in_h):
            for j in range(in_w):
Y
Yibing Liu 已提交
86 87 88 89 90 91 92 93 94 95 96 97
                for g in range(groups):
                    input_masked = input_[n, g * sub_in_c:(g + 1) * sub_in_c, i,
                                          j]  # (c)
                    input_masked = np.reshape(input_masked, (sub_in_c, 1, 1))
                    input_masked = np.tile(input_masked, (1, f_h, f_w))

                    for k in range(f_out_c):
                        tmp_out = np.sum(
                            input_masked *
                            filter_[g * sub_in_c:(g + 1) * sub_in_c, k, :, :],
                            axis=0)
                        i1, i2 = i * stride[0], i * stride[0] + d_bolck_h
98
                        j1, j2 = j * stride[1], j * stride[1] + d_bolck_w
Y
Yibing Liu 已提交
99 100
                        out[n, g * f_out_c + k, i1:i2:dilations[0], j1:j2:
                            dilations[1]] += tmp_out
Z
deconv  
zchen0211 已提交
101

102 103 104
    out = out[:, :, pad_h_0:out_h - pad_h_1, pad_w_0:out_w - pad_w_1]
    if attrs['data_format'] == 'NHWC':
        out = np.transpose(out, [0, 2, 3, 1])
Z
deconv  
zchen0211 已提交
105 106 107
    return out


Z
zchen0211 已提交
108
class TestConv2dTransposeOp(OpTest):
Z
deconv  
zchen0211 已提交
109
    def setUp(self):
Z
zchen0211 已提交
110
        # init as conv transpose
111
        self.dtype = np.float64
112
        self.need_check_grad = True
J
Jacek Czaja 已提交
113
        self.is_test = False
114
        self.use_cudnn = False
J
Jacek Czaja 已提交
115
        self.use_mkldnn = False
116
        self.output_size = None
117 118 119
        self.data_format = "NCHW"
        self.pad = [0, 0]
        self.padding_algorithm = "EXPLICIT"
Z
deconv  
zchen0211 已提交
120 121 122
        self.init_op_type()
        self.init_test_case()

123 124
        input_ = np.random.random(self.input_size).astype(self.dtype)
        filter_ = np.random.random(self.filter_size).astype(self.dtype)
Z
deconv  
zchen0211 已提交
125 126 127 128 129

        self.inputs = {'Input': input_, 'Filter': filter_}
        self.attrs = {
            'strides': self.stride,
            'paddings': self.pad,
130
            'padding_algorithm': self.padding_algorithm,
Y
Yibing Liu 已提交
131
            'groups': self.groups,
132 133
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
J
Jacek Czaja 已提交
134 135 136
            'is_test': self.is_test,
            'use_mkldnn': self.use_mkldnn,
            'data_format': self.data_format
Z
deconv  
zchen0211 已提交
137
        }
138 139
        if self.output_size is not None:
            self.attrs['output_size'] = self.output_size
C
chengduoZH 已提交
140 141

        output = conv2dtranspose_forward_naive(input_, filter_,
142
                                               self.attrs).astype(self.dtype)
C
chengduoZH 已提交
143

Z
deconv  
zchen0211 已提交
144 145 146
        self.outputs = {'Output': output}

    def test_check_output(self):
147
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
148 149
        if self.use_cudnn:
            place = core.CUDAPlace(0)
150 151
            self.check_output_with_place(
                place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
152
        else:
153
            self.check_output(check_dygraph=(self.use_mkldnn == False))
Z
deconv  
zchen0211 已提交
154

Z
zchen0211 已提交
155
    def test_check_grad_no_input(self):
156 157 158 159 160 161 162 163 164 165 166
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
                self.check_grad_with_place(
                    place, ['Filter'],
                    'Output',
                    max_relative_error=0.02,
                    no_grad_set=set(['Input']))
            else:
                self.check_grad(
                    ['Filter'], 'Output', no_grad_set=set(['Input']))
Z
zchen0211 已提交
167 168

    def test_check_grad_no_filter(self):
169 170 171 172 173 174 175 176
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
                self.check_grad_with_place(
                    place, ['Input'], 'Output', no_grad_set=set(['Filter']))
            else:
                self.check_grad(
                    ['Input'], 'Output', no_grad_set=set(['Filter']))
Z
deconv  
zchen0211 已提交
177

Z
zchen0211 已提交
178
    def test_check_grad(self):
179 180 181 182 183 184 185 186 187 188 189
        if self.need_check_grad:
            if self.use_cudnn:
                place = core.CUDAPlace(0)
                self.check_grad_with_place(
                    place,
                    set(['Input', 'Filter']),
                    'Output',
                    max_relative_error=0.02)
            else:
                self.check_grad(
                    set(['Input', 'Filter']), 'Output', max_relative_error=0.02)
C
chengduoZH 已提交
190 191 192 193 194

    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
195
        self.groups = 1
C
chengduoZH 已提交
196 197 198 199 200 201
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.op_type = "conv2d_transpose"
Z
deconv  
zchen0211 已提交
202

Z
zchen0211 已提交
203

204
class TestWithSymmetricPad(TestConv2dTransposeOp):
C
chengduoZH 已提交
205 206 207 208
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
209
        self.groups = 1
C
chengduoZH 已提交
210 211 212 213 214
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


215 216 217 218 219 220 221 222 223 224 225 226 227
class TestWithAsymmetricPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


class TestWithSAMEPad(TestConv2dTransposeOp):
    def init_test_case(self):
228 229
        self.stride = [2, 1]
        self.dilations = [1, 2]
230
        self.groups = 1
231
        self.input_size = [2, 3, 6, 5]  # NCHW
232
        f_c = self.input_size[1]
233
        self.filter_size = [f_c, 6, 4, 3]
234 235 236 237 238 239 240 241 242 243 244 245 246 247
        self.padding_algorithm = 'SAME'


class TestWithVALIDPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]
        self.padding_algorithm = 'VALID'


Y
Yibing Liu 已提交
248 249 250 251 252 253 254 255 256 257 258
class TestWithGroups(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]


C
chengduoZH 已提交
259 260 261 262 263
class TestWithStride(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
Y
Yibing Liu 已提交
264
        self.groups = 1
C
chengduoZH 已提交
265 266 267 268 269
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


C
chengduoZH 已提交
270 271 272 273
class TestWithDilation(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
274
        self.groups = 1
C
chengduoZH 已提交
275 276 277 278 279 280
        self.dilations = [2, 2]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]


281 282 283 284 285 286 287 288 289 290 291 292
class TestWithEvenUpsample(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 3, 7, 7]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 5, 5]


293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
class Test_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


class TestWithSymmetricPad_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


class TestWithAsymmetricPad_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


class TestWithGroups_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'


class TestWithStride_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


class TestWithDilation_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [2, 2]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


class TestWithEvenUpsample_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'


C
chengduoZH 已提交
378
# ------------ test_cudnn ------------
379 380
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
381
class TestCUDNN(TestConv2dTransposeOp):
Z
deconv  
zchen0211 已提交
382
    def init_op_type(self):
383 384
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
Z
zchen0211 已提交
385

Z
deconv  
zchen0211 已提交
386

387 388
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
389
class TestCUDNNWithSymmetricPad(TestWithSymmetricPad):
C
chengduoZH 已提交
390 391 392
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
Y
Yibing Liu 已提交
393
        self.groups = 1
C
chengduoZH 已提交
394 395 396 397 398 399
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
400 401
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
402 403


404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad(TestWithAsymmetricPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSAMEPad(TestWithSAMEPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
426
        self.stride = [1, 2]
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithVALIDPad(TestWithVALIDPad):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


455 456
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
457
class TestCUDNNWithStride(TestWithStride):
C
chengduoZH 已提交
458 459 460
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
Y
Yibing Liu 已提交
461
        self.groups = 1
C
chengduoZH 已提交
462 463 464 465 466 467
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
468 469
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
470 471


472 473
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
class TestCUDNNWithGroups(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 4, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 3, 3, 3]

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


489 490 491 492 493 494 495 496 497
# ------------ test_cudnn ------------
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample(TestWithEvenUpsample):
    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


498 499
# Please Don't remove the following code.
# Currently, CI use cudnn V5.0 which not support dilation conv.
500
# class TestCUDNNWithDilation(TestWithDilation):
C
chengduoZH 已提交
501 502 503 504 505 506 507 508 509
#     def init_test_case(self):
#         self.pad = [1, 1]
#         self.stride = [2, 2]
#         self.dilations = [2, 2]
#         self.input_size = [2, 3, 5, 5]  # NCHW
#         f_c = self.input_size[1]
#         self.filter_size = [f_c, 6, 3, 3]
#
#     def init_op_type(self):
510
#         self.op_type = "conv2d_transpose"
C
chengduoZH 已提交
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNN_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad_NHWC(TestWithSymmetricPad):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad_NHWC(TestWithSymmetricPad):
    def init_test_case(self):
        self.pad = [1, 0, 2, 3]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithStride_NHWC(TestWithStride):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithGroups_NHWC(TestWithGroups):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample_NHWC(TestWithEvenUpsample):
    def init_test_case(self):
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'

    def init_op_type(self):
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"


class TestDepthwiseConvTranspose(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 8, 16, 16]  # NCHW
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [self.input_size[1], f_c, 4, 4]
        self.op_type = "depthwise_conv2d_transpose"


class TestDepthwiseConvTransposeAsymmetricPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 8, 16, 16]  # NCHW
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [self.input_size[1], f_c, 3, 3]
        self.op_type = "depthwise_conv2d_transpose"
        self.data_format = 'NCHW'


class TestDepthwiseConvTransposeSAMEPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 8, 16, 16]  # NHWC
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [self.input_size[1], f_c, 3, 3]
        self.op_type = "depthwise_conv2d_transpose"
        self.padding_algorithm = 'SAME'


class TestDepthwiseConvTransposeVALIDPad(TestConv2dTransposeOp):
    def init_test_case(self):
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 8, 16, 16]  # NHWC
        self.groups = 8
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] // self.groups
        self.filter_size = [self.input_size[1], f_c, 3, 3]
        self.op_type = "depthwise_conv2d_transpose"
        self.padding_algorithm = 'VALID'


class TestDepthwiseConvTranspose_NHWC_4x4kernel(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 16, 16, 8]  # NHWC
        self.groups = 8
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [self.input_size[3], f_c, 4, 4]
        self.op_type = "depthwise_conv2d_transpose"
        self.data_format = 'NHWC'


class TestDepthwiseConvTranspose_NHWC_3x3kernel(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 16, 16, 8]  # NHWC
        self.groups = 8
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [self.input_size[3], f_c, 3, 3]
        self.op_type = "depthwise_conv2d_transpose"
        self.data_format = 'NHWC'


class TestDepthwiseConvTransposeAsymmetricPad_NHWC(TestConv2dTransposeOp):
    def init_test_case(self):
        self.pad = [1, 0, 1, 2]
        self.stride = [2, 2]
        self.dilations = [1, 1]
        self.input_size = [2, 16, 16, 8]  # NHWC
        self.groups = 8
        assert np.mod(self.input_size[3], self.groups) == 0
        f_c = self.input_size[3] // self.groups
        self.filter_size = [self.input_size[3], f_c, 3, 3]
        self.op_type = "depthwise_conv2d_transpose"
        self.data_format = 'NHWC'
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNN_FP16(TestConv2dTransposeOp):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 3, 5, 5]  # NCHW
        f_c = self.input_size[1]
        self.filter_size = [f_c, 6, 3, 3]

    def init_op_type(self):
        self.need_check_grad = False
        self.use_cudnn = True
        self.op_type = "conv2d_transpose"

    def test_check_output(self):
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(
                place, atol=0.02, check_dygraph=(self.use_mkldnn == False))
        else:
            self.check_output(check_dygraph=(self.use_mkldnn == False))


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNN_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [0, 0]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 1
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithSymmetricPad_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithAsymmetricPad_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 0, 2, 3]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithStride_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.input_size = [2, 5, 5, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithGroups_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [1, 1]
        self.stride = [1, 1]
        self.dilations = [1, 1]
        self.groups = 2
        self.input_size = [2, 5, 5, 4]  # NCHW
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 3, 3, 3]
        self.data_format = 'NHWC'


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestCUDNNWithEvenUpsample_NHWC_FP16(TestCUDNN_FP16):
    def init_test_case(self):
        self.dtype = np.float16
        self.pad = [2, 2]
        self.stride = [2, 2]
        self.groups = 1
        self.dilations = [1, 1]
        self.output_size = [14, 14]
        self.input_size = [2, 7, 7, 3]  # NHWC
        f_c = self.input_size[-1]
        self.filter_size = [f_c, 6, 5, 5]
        self.data_format = 'NHWC'
833 834


835
class TestConv2dTransposeAPI(unittest.TestCase):
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
    def test_case1(self):
        data1 = fluid.layers.data(
            name='data1', shape=[3, 5, 5], dtype='float32')
        data2 = fluid.layers.data(
            name='data2', shape=[5, 5, 3], dtype='float32')
        out1 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NCHW')
        out2 = fluid.layers.conv2d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            data_format='NHWC')
        out3 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [1, 1], [1, 1], [0, 0]],
            data_format='NHWC')
        out4 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=3,
            num_filters=6,
            filter_size=3,
            padding=[[0, 0], [0, 0], [2, 1], [0, 0]],
            data_format='NCHW')
        out5 = fluid.layers.conv2d_transpose(
            input=data2,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='SAME',
            data_format='NCHW')
        out6 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            filter_size=3,
            padding='VALID',
            data_format='NHWC')
        out7 = fluid.layers.conv2d_transpose(
            input=data1,
            groups=1,
            num_filters=6,
            output_size=[7, 7],
            padding=[0, 0],
            data_format='NHWC')

        data1_np = np.random.random((2, 3, 5, 5)).astype("float32")
        data2_np = np.random.random((2, 5, 5, 3)).astype("float32")

        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        results = exe.run(
            fluid.default_main_program(),
            feed={"data1": data1_np,
                  "data2": data2_np},
            fetch_list=[out1, out2, out3, out4, out5, out6, out7],
            return_numpy=True)
        self.assertIsNotNone(results[0])
        self.assertIsNotNone(results[1])
        self.assertIsNotNone(results[2])
        self.assertIsNotNone(results[3])
        self.assertIsNotNone(results[4])
        self.assertIsNotNone(results[5])
        self.assertIsNotNone(results[6])


913
class TestConv2dTransposeOpException(unittest.TestCase):
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
    def test_exception(self):
        data = fluid.layers.data(name='data', shape=[3, 5, 5], dtype="float32")

        def attr_data_format():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                data_format="NCDHW")

        self.assertRaises(ValueError, attr_data_format)

        def attr_padding_str():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding='Vald')

        self.assertRaises(ValueError, attr_padding_str)

        def attr_padding_list():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [1, 1], [0, 0], [0, 0]])

        self.assertRaises(ValueError, attr_padding_list)

        def attr_padding_with_data_format():
            out = fluid.layers.conv2d_transpose(
                input=data,
                groups=1,
                num_filters=6,
                filter_size=3,
                padding=[[1, 1], [0, 0], [0, 0], [1, 1]],
                data_format='NHWC')

        self.assertRaises(ValueError, attr_padding_with_data_format)


Z
deconv  
zchen0211 已提交
959 960
if __name__ == '__main__':
    unittest.main()