lookup_table_op.cc 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32 33 34
    PADDLE_ENFORCE(ctx->HasInput("W"),
                   "Input(W) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
                   "Input(Ids) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LookupTableOp should not be null.");

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
35
    int ids_rank = ids_dims.size();
36
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
37 38 39
    PADDLE_ENFORCE_EQ(table_dims.size(), 2);
    PADDLE_ENFORCE_EQ(ids_dims[ids_rank - 1], 1,
                      "The last dimension of the 'Ids' tensor must be 1.");
40

41 42 43 44
    auto output_dims =
        framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
    output_dims.push_back(table_dims[1]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
45 46 47 48 49

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
50
  }
Y
Yu Yang 已提交
51

52
 protected:
53
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
54
      const framework::ExecutionContext& ctx) const override {
Q
qiaolongfei 已提交
55 56
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
57
  }
58 59 60 61
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
62
  void Make() override {
63
    AddInput("W",
C
chengduoZH 已提交
64
             "(Tensor) The input represents embedding tensors, "
K
kexinzhao 已提交
65
             "which is a learnable parameter.");
66 67 68
    AddInput("Ids",
             "An input with type int32 or int64 "
             "contains the ids to be looked up in W. "
69
             "The last dimension size must be 1.");
70
    AddOutput("Out", "The lookup results, which have the same type as W.");
C
chengduoZH 已提交
71
    AddAttr<bool>("is_sparse",
C
chengduoZH 已提交
72
                  "(boolean, default false) "
C
chengduoZH 已提交
73
                  "Sparse update.")
C
chengduoZH 已提交
74
        .SetDefault(false);
75 76 77
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
        .SetDefault(false);
C
chengduoZH 已提交
78 79 80 81 82
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
83
        .SetDefault(kNoPadding);
M
minqiyang 已提交
84 85
    // NOTE(minqiyang): grad_inplace is an temporal attribute,
    // please do NOT set this attribute in python layer.
M
minqiyang 已提交
86 87 88 89
    AddAttr<bool>("grad_inplace",
                  "(boolean, default false) "
                  "If the grad op reuse the input's variable.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
90 91

    // for parameter prefetch
Q
Qiao Longfei 已提交
92
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
Q
Qiao Longfei 已提交
93
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
94 95 96
    AddAttr<std::vector<int>>("height_sections",
                              "Height for each output SelectedRows.")
        .SetDefault(std::vector<int>({}));
Q
Qiao Longfei 已提交
97 98 99 100
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
Q
Qiao Longfei 已提交
101
        .SetDefault({});
Q
Qiao Longfei 已提交
102 103 104 105 106 107
    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the splited table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
Q
Qiao Longfei 已提交
108

C
chengduoZH 已提交
109
    AddComment(R"DOC(
C
chengduoZH 已提交
110
Lookup Table Operator.
C
chengduoZH 已提交
111

C
chengduoZH 已提交
112
This operator is used to perform lookups on the parameter W,
113
then concatenated into a dense tensor.
114

115 116
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
C
chengduoZH 已提交
117 118 119 120 121

)DOC");
  }
};

122 123 124 125 126 127 128 129 130
class LookupTableOpGradDescMaker
    : public framework::DefaultGradOpDescMaker<true> {
  using ::paddle::framework::DefaultGradOpDescMaker<
      true>::DefaultGradOpDescMaker;

 protected:
  virtual std::string GradOpType() const { return "lookup_table_grad"; }
};

131 132 133 134
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

135
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
136 137
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
138
  }
Y
Yu Yang 已提交
139

140
 protected:
141
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
142
      const framework::ExecutionContext& ctx) const override {
Q
Qiao Longfei 已提交
143
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("Out"));
Q
qiaolongfei 已提交
144
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
145
  }
146 147
};

148 149
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
150 151 152
  void operator()(framework::InferVarTypeContext* ctx) const override {
    auto out_var_name = ctx->Output(framework::GradVarName("W")).front();
    auto attr = ctx->GetAttr("is_sparse");
153 154
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
M
minqiyang 已提交
155 156
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
M
minqiyang 已提交
157
      ctx->SetType(out_var_name, framework::proto::VarType::SELECTED_ROWS);
158
    } else {
M
minqiyang 已提交
159 160
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
M
minqiyang 已提交
161
      ctx->SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
162
    }
M
minqiyang 已提交
163
    ctx->SetDataType(out_var_name, ctx->GetDataType(ctx->Input("W")[0]));
164 165 166
  }
};

167 168 169 170
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
171 172 173 174 175 176 177 178 179
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp,
                  ops::LookupTableOpGradDescMaker, ops::LookupTableOpMaker);
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
                       ops::LookupTableKernel<double>);
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);