psroi_pool_op.cc 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/psroi_pool_op.h"
S
sneaxiy 已提交
16
#include <memory>
17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class PSROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
28
             "(Tensor), "
29 30 31 32
             "the input of PSROIPoolOp. "
             "The format of input tensor is NCHW. Where N is the batch size, "
             "C is the number of input channels, "
             "H is the height of the input feature map, and "
S
SunGaofeng 已提交
33
             "W is the width. The data type can be float32 or float64");
34
    AddInput("ROIs",
35
             "(LoDTensor), "
36 37 38 39 40 41
             "ROIs (Regions of Interest) to pool over. "
             "should be a 2-D LoDTensor of shape (num_rois, 4) "
             "given as [(x1, y1, x2, y2), ...]. "
             "where (x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates. "
             "The roi batch index can be calculated from LoD.");
42 43 44 45
    AddInput("RoisNum",
             "(Tensor), "
             "The number of RoIs in each image.")
        .AsDispensable();
46
    AddOutput("Out",
47
              "(Tensor), "
48
              "the output of PSROIPoolOp is a 4-D Tensor with shape "
S
SunGaofeng 已提交
49 50
              "(num_rois, output_channels, pooled_h, pooled_w). "
              "The data type is the same as `x` ");
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    AddAttr<int>(
        "output_channels",
        "(int), "
        "the number of channels of the output feature map. "
        "For a task of C classes of objects, output_channels should be "
        "(C + 1) for classification only.");
    AddAttr<float>("spatial_scale",
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
        .SetDefault(1.0);
    AddAttr<int>("pooled_height",
                 "(int, default 1), "
                 "the pooled output height.")
        .SetDefault(1);
    AddAttr<int>("pooled_width",
                 "(int, default 1), "
                 "the pooled output width.")
        .SetDefault(1);
    AddComment(R"Doc(
Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
position-sensitive average pooling on regions of interest specified by input, takes as 
input N position-sensitive score maps and a list of num_rois regions of interest. 

PSROIPooling for R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details.
    )Doc");
  }
};

class PSROIPoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
86 87 88 89 90 91 92 93 94
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of PSROIPoolOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("ROIs"), true,
                      platform::errors::InvalidArgument(
                          "Input(ROIs) of PSROIPoolOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(Out) of PSROIPoolOp should not be null."));
95 96 97
    auto input_dims = ctx->GetInputDim("X");
    auto rois_dims = ctx->GetInputDim("ROIs");

98 99 100 101 102 103 104 105 106 107 108 109 110
    PADDLE_ENFORCE_EQ(input_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "The format of input tensor is NCHW"));
    PADDLE_ENFORCE_EQ(
        rois_dims.size(), 2,
        platform::errors::InvalidArgument(
            "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
            "given as [(x1, y1, x2, y2), ...]"));
    PADDLE_ENFORCE_EQ(
        rois_dims[1], 4,
        platform::errors::InvalidArgument(
            "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
            "given as [(x1, y1, x2, y2), ...]"));
111 112 113 114 115 116 117 118
    if (ctx->HasInput("RoisNum")) {
      auto rois_num_dims = ctx->GetInputDim("RoisNum");
      PADDLE_ENFORCE_EQ(rois_num_dims.size(), 1,
                        platform::errors::InvalidArgument(
                            "The second dimension of RoisNum should "
                            "be 1, but received dimension is %d",
                            rois_num_dims.size()));
    }
119 120 121 122 123
    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    int output_channels = ctx->Attrs().Get<int>("output_channels");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

124 125 126 127 128 129 130
    PADDLE_ENFORCE_EQ(
        input_dims[1], output_channels * pooled_height * pooled_width,
        platform::errors::InvalidArgument(
            "the channel of X(%d) "
            "should be equal to the product of "
            "output_channels(%d), pooled_height(%d) and pooled_width(%d)",
            input_dims[1], output_channels, pooled_height, pooled_width));
131 132

    PADDLE_ENFORCE_GT(pooled_height, 0,
133 134
                      platform::errors::InvalidArgument(
                          "The pooled output height must be greater than 0"));
135
    PADDLE_ENFORCE_GT(pooled_width, 0,
136 137
                      platform::errors::InvalidArgument(
                          "The pooled output width must be greater than 0"));
138
    PADDLE_ENFORCE_GT(output_channels, 1,
139 140
                      platform::errors::InvalidArgument(
                          "The pooled output channels must greater than 1"));
141
    PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
142 143
                      platform::errors::InvalidArgument(
                          "The spatial scale must greater than 0."));
144 145 146 147 148 149 150 151 152 153 154 155 156

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
    out_dims[1] =
        output_channels;  // input_dims[1] / (pooled_height * pooled_width);
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;
    ctx->SetOutputDim("Out", out_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
157 158 159
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
160 161 162 163 164 165 166 167
  }
};

class PSROIPoolGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
168 169 170 171 172 173
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "The gradient of Out should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      platform::errors::InvalidArgument(
                          "The gradient of X should not be null."));
174 175 176 177 178 179
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
180 181 182
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
183 184 185
  }
};

H
hong 已提交
186 187
template <typename T>
class PSROIPoolGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
188
 public:
H
hong 已提交
189
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
190 191

 protected:
192
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
193
    op->SetType("psroi_pool_grad");
H
hong 已提交
194 195
    op->SetInput("X", this->Input("X"));
    op->SetInput("ROIs", this->Input("ROIs"));
196
    op->SetInput("RoisNum", this->Input("RoisNum"));
H
hong 已提交
197 198 199
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
200 201 202
  }
};

203 204 205 206 207
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(psroi_pool, ops::PSROIPoolOp, ops::PSROIPoolOpMaker,
H
hong 已提交
208 209
                  ops::PSROIPoolGradMaker<paddle::framework::OpDesc>,
                  ops::PSROIPoolGradMaker<paddle::imperative::OpBase>);
210 211 212 213 214 215 216 217 218
REGISTER_OPERATOR(psroi_pool_grad, ops::PSROIPoolGradOp);
REGISTER_OP_CPU_KERNEL(
    psroi_pool,
    ops::CPUPSROIPoolOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUPSROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    psroi_pool_grad,
    ops::CPUPSROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUPSROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, double>);