psroi_pool_op.cc 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/psroi_pool_op.h"
S
sneaxiy 已提交
16
#include <memory>
17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class PSROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
S
SunGaofeng 已提交
28
             "Tensor, "
29 30 31 32
             "the input of PSROIPoolOp. "
             "The format of input tensor is NCHW. Where N is the batch size, "
             "C is the number of input channels, "
             "H is the height of the input feature map, and "
S
SunGaofeng 已提交
33
             "W is the width. The data type can be float32 or float64");
34
    AddInput("ROIs",
S
SunGaofeng 已提交
35
             "LoDTensor, "
36 37 38 39 40 41 42
             "ROIs (Regions of Interest) to pool over. "
             "should be a 2-D LoDTensor of shape (num_rois, 4) "
             "given as [(x1, y1, x2, y2), ...]. "
             "where (x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates. "
             "The roi batch index can be calculated from LoD.");
    AddOutput("Out",
S
SunGaofeng 已提交
43
              "Tensor, "
44
              "the output of PSROIPoolOp is a 4-D Tensor with shape "
S
SunGaofeng 已提交
45 46
              "(num_rois, output_channels, pooled_h, pooled_w). "
              "The data type is the same as `x` ");
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    AddAttr<int>(
        "output_channels",
        "(int), "
        "the number of channels of the output feature map. "
        "For a task of C classes of objects, output_channels should be "
        "(C + 1) for classification only.");
    AddAttr<float>("spatial_scale",
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
        .SetDefault(1.0);
    AddAttr<int>("pooled_height",
                 "(int, default 1), "
                 "the pooled output height.")
        .SetDefault(1);
    AddAttr<int>("pooled_width",
                 "(int, default 1), "
                 "the pooled output width.")
        .SetDefault(1);
    AddComment(R"Doc(
S
SunGaofeng 已提交
68
**PSROIPool Operator,** `rois` **of this op should be a LoDTensor**
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
position-sensitive average pooling on regions of interest specified by input, takes as 
input N position-sensitive score maps and a list of num_rois regions of interest. 

PSROIPooling for R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details.
    )Doc");
  }
};

class PSROIPoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
84 85 86 87 88 89 90 91 92
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::InvalidArgument(
                          "Input(X) of PSROIPoolOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasInput("ROIs"), true,
                      platform::errors::InvalidArgument(
                          "Input(ROIs) of PSROIPoolOp should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::InvalidArgument(
                          "Output(Out) of PSROIPoolOp should not be null."));
93 94 95
    auto input_dims = ctx->GetInputDim("X");
    auto rois_dims = ctx->GetInputDim("ROIs");

96 97 98 99 100 101 102 103 104 105 106 107 108
    PADDLE_ENFORCE_EQ(input_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "The format of input tensor is NCHW"));
    PADDLE_ENFORCE_EQ(
        rois_dims.size(), 2,
        platform::errors::InvalidArgument(
            "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
            "given as [(x1, y1, x2, y2), ...]"));
    PADDLE_ENFORCE_EQ(
        rois_dims[1], 4,
        platform::errors::InvalidArgument(
            "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
            "given as [(x1, y1, x2, y2), ...]"));
109 110 111 112 113 114

    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    int output_channels = ctx->Attrs().Get<int>("output_channels");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

115 116 117 118 119 120 121
    PADDLE_ENFORCE_EQ(
        input_dims[1], output_channels * pooled_height * pooled_width,
        platform::errors::InvalidArgument(
            "the channel of X(%d) "
            "should be equal to the product of "
            "output_channels(%d), pooled_height(%d) and pooled_width(%d)",
            input_dims[1], output_channels, pooled_height, pooled_width));
122 123

    PADDLE_ENFORCE_GT(pooled_height, 0,
124 125
                      platform::errors::InvalidArgument(
                          "The pooled output height must be greater than 0"));
126
    PADDLE_ENFORCE_GT(pooled_width, 0,
127 128
                      platform::errors::InvalidArgument(
                          "The pooled output width must be greater than 0"));
129
    PADDLE_ENFORCE_GT(output_channels, 1,
130 131
                      platform::errors::InvalidArgument(
                          "The pooled output channels must greater than 1"));
132
    PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
133 134
                      platform::errors::InvalidArgument(
                          "The spatial scale must greater than 0."));
135 136 137 138 139 140 141 142 143 144 145 146 147

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
    out_dims[1] =
        output_channels;  // input_dims[1] / (pooled_height * pooled_width);
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;
    ctx->SetOutputDim("Out", out_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
148 149 150
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
151 152 153 154 155 156 157 158
  }
};

class PSROIPoolGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
159 160 161 162 163 164
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      platform::errors::InvalidArgument(
                          "The gradient of Out should not be null."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
                      platform::errors::InvalidArgument(
                          "The gradient of X should not be null."));
165 166 167 168 169 170
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
171 172 173
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
174 175 176
  }
};

H
hong 已提交
177 178
template <typename T>
class PSROIPoolGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
179
 public:
H
hong 已提交
180
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
181 182

 protected:
183
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
184
    op->SetType("psroi_pool_grad");
H
hong 已提交
185 186 187 188 189
    op->SetInput("X", this->Input("X"));
    op->SetInput("ROIs", this->Input("ROIs"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
190 191 192
  }
};

193 194 195 196 197
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(psroi_pool, ops::PSROIPoolOp, ops::PSROIPoolOpMaker,
H
hong 已提交
198 199
                  ops::PSROIPoolGradMaker<paddle::framework::OpDesc>,
                  ops::PSROIPoolGradMaker<paddle::imperative::OpBase>);
200 201 202 203 204 205 206 207 208
REGISTER_OPERATOR(psroi_pool_grad, ops::PSROIPoolGradOp);
REGISTER_OP_CPU_KERNEL(
    psroi_pool,
    ops::CPUPSROIPoolOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUPSROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    psroi_pool_grad,
    ops::CPUPSROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUPSROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, double>);