psroi_pool_op.cc 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/psroi_pool_op.h"
S
sneaxiy 已提交
16
#include <memory>
17 18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class PSROIPoolOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
S
SunGaofeng 已提交
28
             "Tensor, "
29 30 31 32
             "the input of PSROIPoolOp. "
             "The format of input tensor is NCHW. Where N is the batch size, "
             "C is the number of input channels, "
             "H is the height of the input feature map, and "
S
SunGaofeng 已提交
33
             "W is the width. The data type can be float32 or float64");
34
    AddInput("ROIs",
S
SunGaofeng 已提交
35
             "LoDTensor, "
36 37 38 39 40 41 42
             "ROIs (Regions of Interest) to pool over. "
             "should be a 2-D LoDTensor of shape (num_rois, 4) "
             "given as [(x1, y1, x2, y2), ...]. "
             "where (x1, y1) is the top left coordinates, and "
             "(x2, y2) is the bottom right coordinates. "
             "The roi batch index can be calculated from LoD.");
    AddOutput("Out",
S
SunGaofeng 已提交
43
              "Tensor, "
44
              "the output of PSROIPoolOp is a 4-D Tensor with shape "
S
SunGaofeng 已提交
45 46
              "(num_rois, output_channels, pooled_h, pooled_w). "
              "The data type is the same as `x` ");
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    AddAttr<int>(
        "output_channels",
        "(int), "
        "the number of channels of the output feature map. "
        "For a task of C classes of objects, output_channels should be "
        "(C + 1) for classification only.");
    AddAttr<float>("spatial_scale",
                   "(float, default 1.0), "
                   "Multiplicative spatial scale factor "
                   "to translate ROI coords from their input scale "
                   "to the scale used when pooling.")
        .SetDefault(1.0);
    AddAttr<int>("pooled_height",
                 "(int, default 1), "
                 "the pooled output height.")
        .SetDefault(1);
    AddAttr<int>("pooled_width",
                 "(int, default 1), "
                 "the pooled output width.")
        .SetDefault(1);
    AddComment(R"Doc(
S
SunGaofeng 已提交
68
**PSROIPool Operator,** `rois` **of this op should be a LoDTensor**
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

Position sensitive region of interest pooling (also known as PSROIPooling) is to perform
position-sensitive average pooling on regions of interest specified by input, takes as 
input N position-sensitive score maps and a list of num_rois regions of interest. 

PSROIPooling for R-FCN. Please refer to https://arxiv.org/abs/1605.06409 for more details.
    )Doc");
  }
};

class PSROIPoolOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of PSROIPoolOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("ROIs"),
                   "Input(ROIs) of PSROIPoolOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of PSROIPoolOp should not be null.");
    auto input_dims = ctx->GetInputDim("X");
    auto rois_dims = ctx->GetInputDim("ROIs");

    PADDLE_ENFORCE(input_dims.size() == 4,
                   "The format of input tensor is NCHW");
    PADDLE_ENFORCE(rois_dims.size() == 2,
                   "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
                   "given as [(x1, y1, x2, y2), ...]");
    PADDLE_ENFORCE(rois_dims[1] == 4,
                   "ROIs should be a 2-D LoDTensor of shape (num_rois, 4) "
                   "given as [(x1, y1, x2, y2), ...]");

    int pooled_height = ctx->Attrs().Get<int>("pooled_height");
    int pooled_width = ctx->Attrs().Get<int>("pooled_width");
    int output_channels = ctx->Attrs().Get<int>("output_channels");
    float spatial_scale = ctx->Attrs().Get<float>("spatial_scale");

    PADDLE_ENFORCE(
        input_dims[1] == output_channels * pooled_height * pooled_width,
        "the channel of X(%d) should be equal to the product of "
        "output_channels(%d), pooled_height(%d) and pooled_width(%d)",
        input_dims[1], output_channels, pooled_height, pooled_width);

    PADDLE_ENFORCE_GT(pooled_height, 0,
                      "The pooled output height must be greater than 0");
    PADDLE_ENFORCE_GT(pooled_width, 0,
                      "The pooled output width must be greater than 0");
    PADDLE_ENFORCE_GT(output_channels, 1,
                      "The pooled output channels must greater than 1");
    PADDLE_ENFORCE_GT(spatial_scale, 0.0f,
                      "The spatial scale must greater than 0.");

    auto out_dims = input_dims;
    out_dims[0] = rois_dims[0];
    out_dims[1] =
        output_channels;  // input_dims[1] / (pooled_height * pooled_width);
    out_dims[2] = pooled_height;
    out_dims[3] = pooled_width;
    ctx->SetOutputDim("Out", out_dims);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
134 135 136
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
  }
};

class PSROIPoolGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "The gradient of Out should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "The gradient of X should not be null.");
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
155 156 157
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
158 159 160
  }
};

H
hong 已提交
161 162
template <typename T>
class PSROIPoolGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
163
 public:
H
hong 已提交
164
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
165 166

 protected:
H
hong 已提交
167 168
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
S
sneaxiy 已提交
169
    op->SetType("psroi_pool_grad");
H
hong 已提交
170 171 172 173 174
    op->SetInput("X", this->Input("X"));
    op->SetInput("ROIs", this->Input("ROIs"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
175 176 177 178
    return op;
  }
};

179 180 181 182 183
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(psroi_pool, ops::PSROIPoolOp, ops::PSROIPoolOpMaker,
H
hong 已提交
184 185
                  ops::PSROIPoolGradMaker<paddle::framework::OpDesc>,
                  ops::PSROIPoolGradMaker<paddle::imperative::OpBase>);
186 187 188 189 190 191 192 193 194
REGISTER_OPERATOR(psroi_pool_grad, ops::PSROIPoolGradOp);
REGISTER_OP_CPU_KERNEL(
    psroi_pool,
    ops::CPUPSROIPoolOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUPSROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    psroi_pool_grad,
    ops::CPUPSROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::CPUPSROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, double>);