test_imperative_mnist.py 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18
from utils import DyGraphProgramDescTracerTestHelper
19 20 21 22 23

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
24 25 26 27
from paddle.nn import Linear
from test_imperative_base import new_program_scope
from utils import DyGraphProgramDescTracerTestHelper
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph
28 29


M
minqiyang 已提交
30
class SimpleImgConvPool(fluid.dygraph.Layer):
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        pool_size,
        pool_stride,
        pool_padding=0,
        pool_type='max',
        global_pooling=False,
        conv_stride=1,
        conv_padding=0,
        conv_dilation=1,
        conv_groups=1,
        act=None,
        use_cudnn=False,
        param_attr=None,
        bias_attr=None,
    ):
50
        super().__init__()
M
minqiyang 已提交
51

52 53 54 55
        self._conv2d = paddle.nn.Conv2D(
            in_channels=num_channels,
            out_channels=num_filters,
            kernel_size=filter_size,
56 57 58 59
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
60
            weight_attr=None,
61 62
            bias_attr=None,
        )
63
        self._pool2d = paddle.fluid.dygraph.nn.Pool2D(
64 65 66 67 68 69 70
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn,
        )
71

M
minqiyang 已提交
72
    def forward(self, inputs):
M
minqiyang 已提交
73 74 75
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
76 77


M
minqiyang 已提交
78
class MNIST(fluid.dygraph.Layer):
79
    def __init__(self):
80
        super().__init__()
81

82 83 84
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            1, 20, 5, 2, 2, act="relu"
        )
85

86 87 88
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            20, 50, 5, 2, 2, act="relu"
        )
M
minqiyang 已提交
89

90
        self.pool_2_shape = 50 * 4 * 4
M
minqiyang 已提交
91
        SIZE = 10
92 93 94 95
        scale = (2.0 / (self.pool_2_shape**2 * SIZE)) ** 0.5
        self._fc = Linear(
            self.pool_2_shape,
            10,
96 97
            weight_attr=paddle.ParamAttr(
                initializer=paddle.nn.initializer.Normal(mean=0.0, std=scale)
98 99
            ),
        )
M
minqiyang 已提交
100 101 102 103

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
104
        x = paddle.reshape(x, shape=[-1, self.pool_2_shape])
M
minqiyang 已提交
105
        x = self._fc(x)
106
        x = paddle.nn.functional.softmax(x)
M
minqiyang 已提交
107 108 109 110
        return x


class TestImperativeMnist(unittest.TestCase):
111 112 113 114 115 116 117 118 119
    def reader_decorator(self, reader):
        def _reader_imple():
            for item in reader():
                image = np.array(item[0]).reshape(1, 28, 28)
                label = np.array(item[1]).astype('int64').reshape(1)
                yield image, label

        return _reader_imple

120
    def func_test_mnist_float32(self):
121
        seed = 90
M
minqiyang 已提交
122
        epoch_num = 1
123 124 125
        batch_size = 128
        batch_num = 50

126 127
        traced_layer = None

M
minqiyang 已提交
128
        with fluid.dygraph.guard():
129 130 131
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

132
            mnist = MNIST()
133 134 135
            sgd = SGDOptimizer(
                learning_rate=1e-3, parameter_list=mnist.parameters()
            )
136 137 138

            batch_py_reader = fluid.io.PyReader(capacity=1)
            batch_py_reader.decorate_sample_list_generator(
139 140 141 142 143 144 145
                paddle.batch(
                    self.reader_decorator(paddle.dataset.mnist.train()),
                    batch_size=batch_size,
                    drop_last=True,
                ),
                places=fluid.CPUPlace(),
            )
146

M
minqiyang 已提交
147
            mnist.train()
148
            dy_param_init_value = {}
149

150 151
            helper = DyGraphProgramDescTracerTestHelper(self)
            program = None
M
minqiyang 已提交
152
            for epoch in range(epoch_num):
153 154 155 156 157 158
                for batch_id, data in enumerate(batch_py_reader()):
                    if batch_id >= batch_num:
                        break
                    img = data[0]
                    dy_x_data = img.numpy()
                    label = data[1]
L
lujun 已提交
159
                    label.stop_gradient = True
M
minqiyang 已提交
160

J
Jiabin Yang 已提交
161
                    if batch_id % 10 == 0 and _in_legacy_dygraph():
162
                        cost, traced_layer = paddle.jit.TracedLayer.trace(
163 164
                            mnist, inputs=img
                        )
165 166 167 168
                        if program is not None:
                            self.assertTrue(program, traced_layer.program)
                        program = traced_layer.program
                        traced_layer.save_inference_model(
169 170
                            './infer_imperative_mnist'
                        )
171 172 173
                    else:
                        cost = mnist(img)

174 175 176 177
                    if traced_layer is not None:
                        cost_static = traced_layer([img])
                        helper.assertEachVar(cost, cost_static)

M
minqiyang 已提交
178
                    loss = fluid.layers.cross_entropy(cost, label)
179
                    avg_loss = paddle.mean(loss)
M
minqiyang 已提交
180

L
lujun 已提交
181
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
182 183 184

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
185
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
186

L
lujun 已提交
187
                    avg_loss.backward()
M
minqiyang 已提交
188 189 190 191 192
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
193
                        dy_param_value[param.name] = param.numpy()
194 195 196 197 198

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

199 200 201 202 203
            exe = fluid.Executor(
                fluid.CPUPlace()
                if not core.is_compiled_with_cuda()
                else fluid.CUDAPlace(0)
            )
204

205
            mnist = MNIST()
M
minqiyang 已提交
206
            sgd = SGDOptimizer(learning_rate=1e-3)
207 208 209 210 211 212 213 214 215
            train_reader = paddle.batch(
                paddle.dataset.mnist.train(),
                batch_size=batch_size,
                drop_last=True,
            )

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
216 217
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
218
            loss = fluid.layers.cross_entropy(cost, label)
219
            avg_loss = paddle.mean(loss)
M
minqiyang 已提交
220
            sgd.minimize(avg_loss)
221 222 223 224

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
225
            for param in mnist.parameters():
226 227
                static_param_name_list.append(param.name)

228 229 230 231
            out = exe.run(
                fluid.default_startup_program(),
                fetch_list=static_param_name_list,
            )
232 233 234 235

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
236 237
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
238 239
                    if batch_id >= batch_num:
                        break
240 241 242 243 244 245 246 247
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28) for x in data]
                    ).astype('float32')
                    y_data = (
                        np.array([x[1] for x in data])
                        .astype('int64')
                        .reshape([batch_size, 1])
                    )
M
minqiyang 已提交
248 249 250

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
251 252 253 254

                    if traced_layer is not None:
                        traced_layer([static_x_data])

255 256 257 258 259
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data, "label": y_data},
                        fetch_list=fetch_list,
                    )
M
minqiyang 已提交
260 261 262 263

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
264 265 266
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i
                        ]
M
minqiyang 已提交
267

268 269 270
        np.testing.assert_allclose(
            dy_x_data.all(), static_x_data.all(), rtol=1e-05
        )
271

272
        for key, value in static_param_init_value.items():
273 274 275
            np.testing.assert_allclose(
                value, dy_param_init_value[key], rtol=1e-05
            )
M
minqiyang 已提交
276

277
        np.testing.assert_allclose(static_out, dy_out, rtol=1e-05)
M
minqiyang 已提交
278

279
        for key, value in static_param_value.items():
280 281 282
            np.testing.assert_allclose(
                value, dy_param_value[key], rtol=1e-05, atol=1e-05
            )
283

284 285 286 287 288
    def test_mnist_float32(self):
        with _test_eager_guard():
            self.func_test_mnist_float32()
        self.func_test_mnist_float32()

289 290

if __name__ == '__main__':
H
hong 已提交
291
    paddle.enable_static()
292
    unittest.main()