test_imperative_mnist.py 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15 16
from __future__ import print_function

17 18 19 20 21 22 23 24 25
import contextlib
import unittest
import numpy as np
import six

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
M
minqiyang 已提交
26 27
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, FC
from paddle.fluid.dygraph.base import to_variable
28 29 30
from test_imperative_base import new_program_scope


M
minqiyang 已提交
31
class SimpleImgConvPool(fluid.dygraph.Layer):
M
minqiyang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    def __init__(self,
                 name_scope,
                 num_channels,
                 num_filters,
                 filter_size,
                 pool_size,
                 pool_stride,
                 pool_padding=0,
                 pool_type='max',
                 global_pooling=False,
                 conv_stride=1,
                 conv_padding=0,
                 conv_dilation=1,
                 conv_groups=1,
                 act=None,
                 use_cudnn=False,
                 param_attr=None,
                 bias_attr=None):
        super(SimpleImgConvPool, self).__init__(name_scope)

        self._conv2d = Conv2D(
            self.full_name(),
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=conv_stride,
            padding=conv_padding,
            dilation=conv_dilation,
            groups=conv_groups,
            param_attr=None,
            bias_attr=None,
            use_cudnn=use_cudnn)

        self._pool2d = Pool2D(
            self.full_name(),
            pool_size=pool_size,
            pool_type=pool_type,
            pool_stride=pool_stride,
            pool_padding=pool_padding,
            global_pooling=global_pooling,
            use_cudnn=use_cudnn)
73

M
minqiyang 已提交
74
    def forward(self, inputs):
M
minqiyang 已提交
75 76 77
        x = self._conv2d(inputs)
        x = self._pool2d(x)
        return x
78 79


M
minqiyang 已提交
80
class MNIST(fluid.dygraph.Layer):
M
minqiyang 已提交
81 82
    def __init__(self, name_scope):
        super(MNIST, self).__init__(name_scope)
83

M
minqiyang 已提交
84 85
        self._simple_img_conv_pool_1 = SimpleImgConvPool(
            self.full_name(), 1, 20, 5, 2, 2, act="relu")
86

M
minqiyang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        self._simple_img_conv_pool_2 = SimpleImgConvPool(
            self.full_name(), 20, 50, 5, 2, 2, act="relu")

        pool_2_shape = 50 * 4 * 4
        SIZE = 10
        scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
        self._fc = FC(self.full_name(),
                      10,
                      param_attr=fluid.param_attr.ParamAttr(
                          initializer=fluid.initializer.NormalInitializer(
                              loc=0.0, scale=scale)),
                      act="softmax")

    def forward(self, inputs):
        x = self._simple_img_conv_pool_1(inputs)
        x = self._simple_img_conv_pool_2(x)
        x = self._fc(x)
        return x


class TestImperativeMnist(unittest.TestCase):
    def test_mnist_float32(self):
109
        seed = 90
M
minqiyang 已提交
110
        epoch_num = 1
M
minqiyang 已提交
111
        with fluid.dygraph.guard():
112 113 114
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

M
minqiyang 已提交
115 116
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
117
            train_reader = paddle.batch(
M
minqiyang 已提交
118
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
119 120

            dy_param_init_value = {}
M
minqiyang 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    dy_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape(128, 1)

                    img = to_variable(dy_x_data)
                    label = to_variable(y_data)
                    label._stop_gradient = True

                    cost = mnist(img)
                    loss = fluid.layers.cross_entropy(cost, label)
                    avg_loss = fluid.layers.mean(loss)

L
lujun 已提交
137
                    dy_out = avg_loss.numpy()
M
minqiyang 已提交
138 139 140

                    if epoch == 0 and batch_id == 0:
                        for param in mnist.parameters():
L
lujun 已提交
141
                            dy_param_init_value[param.name] = param.numpy()
M
minqiyang 已提交
142

L
lujun 已提交
143
                    avg_loss.backward()
M
minqiyang 已提交
144 145 146 147 148
                    sgd.minimize(avg_loss)
                    mnist.clear_gradients()

                    dy_param_value = {}
                    for param in mnist.parameters():
L
lujun 已提交
149
                        dy_param_value[param.name] = param.numpy()
150 151 152 153 154 155 156 157

        with new_program_scope():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            exe = fluid.Executor(fluid.CPUPlace(
            ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))

M
minqiyang 已提交
158 159
            mnist = MNIST("mnist")
            sgd = SGDOptimizer(learning_rate=1e-3)
160
            train_reader = paddle.batch(
M
minqiyang 已提交
161
                paddle.dataset.mnist.train(), batch_size=128, drop_last=True)
162 163 164 165 166

            img = fluid.layers.data(
                name='pixel', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            cost = mnist(img)
M
minqiyang 已提交
167 168 169
            loss = fluid.layers.cross_entropy(cost, label)
            avg_loss = fluid.layers.mean(loss)
            sgd.minimize(avg_loss)
170 171 172 173

            # initialize params and fetch them
            static_param_init_value = {}
            static_param_name_list = []
M
minqiyang 已提交
174
            for param in mnist.parameters():
175 176 177 178 179 180 181 182
                static_param_name_list.append(param.name)

            out = exe.run(fluid.default_startup_program(),
                          fetch_list=static_param_name_list)

            for i in range(len(static_param_name_list)):
                static_param_init_value[static_param_name_list[i]] = out[i]

M
minqiyang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
            for epoch in range(epoch_num):
                for batch_id, data in enumerate(train_reader()):
                    static_x_data = np.array(
                        [x[0].reshape(1, 28, 28)
                         for x in data]).astype('float32')
                    y_data = np.array(
                        [x[1] for x in data]).astype('int64').reshape([128, 1])

                    fetch_list = [avg_loss.name]
                    fetch_list.extend(static_param_name_list)
                    out = exe.run(
                        fluid.default_main_program(),
                        feed={"pixel": static_x_data,
                              "label": y_data},
                        fetch_list=fetch_list)

                    static_param_value = {}
                    static_out = out[0]
                    for i in range(1, len(out)):
                        static_param_value[static_param_name_list[i - 1]] = out[
                            i]

        self.assertTrue(np.allclose(dy_x_data.all(), static_x_data.all()))
206 207

        for key, value in six.iteritems(static_param_init_value):
M
minqiyang 已提交
208 209 210 211
            self.assertTrue(np.allclose(value, dy_param_init_value[key]))

        self.assertTrue(np.allclose(static_out, dy_out))

212
        for key, value in six.iteritems(static_param_value):
M
minqiyang 已提交
213
            self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
214 215 216 217


if __name__ == '__main__':
    unittest.main()