grid_sampler_cudnn_op.cu.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dengkaipeng 已提交
14 15 16 17 18 19 20 21 22 23 24

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cudnn_helper.h"

namespace paddle {
namespace operators {

using framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using DataLayout = platform::DataLayout;
using ScopedSpatialTransformerDescriptor =
25
    platform::ScopedSpatialTransformerDescriptor;
D
dengkaipeng 已提交
26 27 28 29 30
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
class CUDNNGridSampleOpKernel : public framework::OpKernel<T> {
31 32
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
33 34 35
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::InvalidArgument(
                          "It must use CUDAPlace when using CUDA Kernel"));
36 37 38 39 40 41 42 43
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* output = ctx.Output<Tensor>("Output");

    int n = input->dims()[0];
    int c = input->dims()[1];
44 45 46
    int out_h = grid->dims()[1];
    int out_w = grid->dims()[2];
    const int size[4] = {n, c, out_h, out_w};
47 48 49

    const T* input_data = input->data<T>();
    const T* grid_data = grid->data<T>();
50 51
    T* output_data =
        output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
52 53 54

    ScopedSpatialTransformerDescriptor st_desc;
    cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
D
dengkaipeng 已提交
55 56
        st_desc.descriptor<T>(4, size);

57 58 59
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
60
        DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
61
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
62
        DataLayout::kNCHW, framework::vectorize<int>(output->dims()));
63

64 65 66 67
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSpatialTfSamplerForward(
        handle, cudnn_st_desc, CudnnDataType<T>::kOne(), cudnn_input_desc,
        input_data, grid_data, CudnnDataType<T>::kZero(), cudnn_output_desc,
        output_data));
68
  }
D
dengkaipeng 已提交
69 70 71 72
};

template <typename T>
class CUDNNGridSampleGradOpKernel : public framework::OpKernel<T> {
73 74
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
75 76 77
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
                      platform::errors::InvalidArgument(
                          "It must use CUDAPlace when using CUDA Kernel"));
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
    auto* input = ctx.Input<Tensor>("X");
    auto* grid = ctx.Input<Tensor>("Grid");
    auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* grid_grad = ctx.Output<Tensor>(framework::GradVarName("Grid"));

    auto output_grad_dims = output_grad->dims();
    const int n = output_grad_dims[0];
    const int c = output_grad_dims[1];
    const int h = output_grad_dims[2];
    const int w = output_grad_dims[3];
    const int size[4] = {n, c, h, w};

    ScopedSpatialTransformerDescriptor st_dest;
    cudnnSpatialTransformerDescriptor_t cudnn_st_dest =
D
dengkaipeng 已提交
95 96
        st_dest.descriptor<T>(4, size);

97 98 99 100
    const T* input_data = input->data<T>();
    const T* grid_data = grid->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data =
101
        input_grad->mutable_data<T>(input->dims(), ctx.GetPlace());
102 103 104 105 106 107 108
    T* grid_grad_data =
        grid_grad->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());

    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor input_grad_desc;
    ScopedTensorDescriptor output_grad_desc;
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
109
        DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
110 111
    cudnnTensorDescriptor_t cudnn_input_grad_desc =
        input_grad_desc.descriptor<T>(
112
            DataLayout::kNCHW, framework::vectorize<int>(input_grad->dims()));
113 114
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
        output_grad_desc.descriptor<T>(
115
            DataLayout::kNCHW, framework::vectorize<int>(output_grad->dims()));
116

117 118 119 120 121 122
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSpatialTfSamplerBackward(
            handle, cudnn_st_dest, CudnnDataType<T>::kOne(), cudnn_input_desc,
            input_data, CudnnDataType<T>::kZero(), cudnn_input_grad_desc,
            input_grad_data, CudnnDataType<T>::kOne(), cudnn_output_grad_desc,
            output_grad_data, grid_data, CudnnDataType<T>::kZero(),
123
            grid_grad_data));
124
  }
D
dengkaipeng 已提交
125 126 127 128 129 130
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
131 132 133
REGISTER_OP_KERNEL(grid_sampler, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNGridSampleOpKernel<float>,
                   paddle::operators::CUDNNGridSampleOpKernel<double>);
D
dengkaipeng 已提交
134
REGISTER_OP_KERNEL(grid_sampler_grad, CUDNN, plat::CUDAPlace,
135 136
                   paddle::operators::CUDNNGridSampleGradOpKernel<float>,
                   paddle::operators::CUDNNGridSampleGradOpKernel<double>);