multiary.h 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
// Common InferMeta Functions for multiary operators, The format like:
//
//   1. The number of input MetaTensor is more than 3:
//      void [FunctionDesc|OpName]InferMeta(const MetaTensor& x,
//                                          const MetaTensor& y,
//                                          const MetaTensor& z,
//                                          const MetaTensor& w,
//                                          ...,
//                                          MetaTensor* out) {}
//
//   2. There are `const vector<MetaTensor*>&` in params:
//      void [FunctionDesc|OpName]InferMeta(const vector<MetaTensor*>& x,
//                                          ...,
//                                          MetaTensor* out) {}
//
// NOTE: The InferMeta Functions in this file are arranged in alphabetic order.

38 39
std::vector<DDim> GetMetaTensorsDim(const std::vector<MetaTensor*>& tensors);

F
From00 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
void AdadeltaInferMeta(const MetaTensor& param,
                       const MetaTensor& grad,
                       const MetaTensor& avg_squared_grad,
                       const MetaTensor& avg_squared_update,
                       float rho,
                       float epsilon,
                       MetaTensor* param_out,
                       MetaTensor* avg_squared_grad_out,
                       MetaTensor* avg_squared_update_out);

void AdamaxInferMeta(const MetaTensor& param,
                     const MetaTensor& grad,
                     const MetaTensor& learning_rate,
                     const MetaTensor& moment,
                     const MetaTensor& inf_norm,
                     const MetaTensor& beta1_pow,
                     float beta1,
                     float beta2,
                     float epsilon,
                     MetaTensor* param_out,
                     MetaTensor* moment_out,
                     MetaTensor* inf_norm_out);

63 64 65 66 67 68 69 70 71 72 73 74
void AucInferMeta(const MetaTensor& input,
                  const MetaTensor& label,
                  const MetaTensor& stat_pos,
                  const MetaTensor& stat_neg,
                  const std::string& curve,
                  int num_thresholds,
                  int slide_steps,
                  MetaTensor* auc,
                  MetaTensor* stat_pos_out,
                  MetaTensor* stat_neg_out,
                  MetaConfig config = MetaConfig());

H
hong 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
void BatchNormInferMeta(const MetaTensor& x,
                        const MetaTensor& scale,
                        const MetaTensor& bias,
                        const MetaTensor& mean,
                        const MetaTensor& variance,
                        float momentum,
                        float epsilon,
                        const std::string& data_layout,
                        bool is_test,
                        bool use_global_stats,
                        bool trainable_statistics,
                        bool fuse_with_relu,
                        MetaTensor* y,
                        MetaTensor* mean_out,
                        MetaTensor* variance_out,
                        MetaTensor* saved_mean,
                        MetaTensor* saved_variance,
                        MetaTensor* reserve_space,
                        MetaConfig config = MetaConfig());

95 96 97 98 99 100 101 102 103 104 105 106 107
void BatchNormInferInferMeta(const MetaTensor& x,
                             const MetaTensor& scale,
                             const MetaTensor& bias,
                             const MetaTensor& mean,
                             const MetaTensor& variance,
                             float momentum,
                             float epsilon,
                             const std::string& data_layout,
                             MetaTensor* y,
                             MetaTensor* mean_out,
                             MetaTensor* variance_out,
                             MetaConfig config = MetaConfig());

108 109 110 111 112 113 114
void BilinearTensorProductInferMeta(const MetaTensor& x,
                                    const MetaTensor& y,
                                    const MetaTensor& weight,
                                    paddle::optional<const MetaTensor&> bias,
                                    MetaTensor* out,
                                    MetaConfig config = MetaConfig());

115 116 117
void BroadcastTensorsInferMeta(const std::vector<MetaTensor*>& x,
                               std::vector<MetaTensor*> out);

118
void ConcatInferMeta(const std::vector<MetaTensor*>& x,
119 120 121
                     const Scalar& axis_scalar,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
void HierarchicalSigmoidInferMeta(const MetaTensor& x,
                                  const MetaTensor& w,
                                  const MetaTensor& label,
                                  paddle::optional<const MetaTensor&> path,
                                  paddle::optional<const MetaTensor&> code,
                                  paddle::optional<const MetaTensor&> bias,
                                  int num_classes,
                                  bool remote_prefetch,
                                  int trainer_id,
                                  const std::vector<int64_t>& height_sections,
                                  const std::vector<std::string>& epmap,
                                  const std::vector<std::string>& table_names,
                                  bool is_sparse,
                                  MetaTensor* out,
                                  MetaTensor* pre_out,
                                  MetaTensor* w_out);

140 141
void MultiDotInferMeta(const std::vector<MetaTensor*>& x, MetaTensor* out);

F
From00 已提交
142 143 144 145 146 147 148 149 150
void PsroiPoolInferMeta(const MetaTensor& x,
                        const MetaTensor& rois,
                        paddle::optional<const MetaTensor&> rois_num,
                        int pooled_height,
                        int pooled_width,
                        int output_channels,
                        float spatial_scale,
                        MetaTensor* out);

151 152 153 154
void WhereInferMeta(const MetaTensor& condition,
                    const MetaTensor& x,
                    const MetaTensor& y,
                    MetaTensor* out);
155

156
}  // namespace phi