Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
de8f2748
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
de8f2748
编写于
2月 26, 2022
作者:
F
From00
提交者:
GitHub
2月 26, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Move BilinearTensorProduct OP to phi (#39903)
* Move BilinearTensorProduct OP to phi * Set dtype for Infermeta
上级
a456dda6
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
569 addition
and
347 deletion
+569
-347
paddle/fluid/operators/bilinear_tensor_product_op.cc
paddle/fluid/operators/bilinear_tensor_product_op.cc
+17
-137
paddle/fluid/operators/bilinear_tensor_product_op.cu
paddle/fluid/operators/bilinear_tensor_product_op.cu
+0
-29
paddle/fluid/operators/bilinear_tensor_product_op.h
paddle/fluid/operators/bilinear_tensor_product_op.h
+0
-181
paddle/phi/infermeta/backward.cc
paddle/phi/infermeta/backward.cc
+48
-0
paddle/phi/infermeta/backward.h
paddle/phi/infermeta/backward.h
+9
-0
paddle/phi/infermeta/multiary.cc
paddle/phi/infermeta/multiary.cc
+66
-0
paddle/phi/infermeta/multiary.h
paddle/phi/infermeta/multiary.h
+7
-0
paddle/phi/kernels/bilinear_tensor_product_grad_kernel.h
paddle/phi/kernels/bilinear_tensor_product_grad_kernel.h
+32
-0
paddle/phi/kernels/bilinear_tensor_product_kernel.h
paddle/phi/kernels/bilinear_tensor_product_kernel.h
+30
-0
paddle/phi/kernels/cpu/bilinear_tensor_product_grad_kernel.cc
...le/phi/kernels/cpu/bilinear_tensor_product_grad_kernel.cc
+25
-0
paddle/phi/kernels/cpu/bilinear_tensor_product_kernel.cc
paddle/phi/kernels/cpu/bilinear_tensor_product_kernel.cc
+25
-0
paddle/phi/kernels/gpu/bilinear_tensor_product_grad_kernel.cu
...le/phi/kernels/gpu/bilinear_tensor_product_grad_kernel.cu
+25
-0
paddle/phi/kernels/gpu/bilinear_tensor_product_kernel.cu
paddle/phi/kernels/gpu/bilinear_tensor_product_kernel.cu
+25
-0
paddle/phi/kernels/impl/bilinear_tensor_product_grad_kernel_impl.h
...i/kernels/impl/bilinear_tensor_product_grad_kernel_impl.h
+144
-0
paddle/phi/kernels/impl/bilinear_tensor_product_kernel_impl.h
...le/phi/kernels/impl/bilinear_tensor_product_kernel_impl.h
+75
-0
paddle/phi/ops/compat/bilinear_tensor_product_sig.cc
paddle/phi/ops/compat/bilinear_tensor_product_sig.cc
+41
-0
未找到文件。
paddle/fluid/operators/bilinear_tensor_product_op.cc
浏览文件 @
de8f2748
...
...
@@ -12,84 +12,18 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/bilinear_tensor_product_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/multiary.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
BilinearTensorProductOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(X) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Y"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Y) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Weight"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Weight) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"Out"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(Out) should not be null."
));
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2UL
,
platform
::
errors
::
InvalidArgument
(
"The input(X) must be a 2D Tensor."
));
PADDLE_ENFORCE_EQ
(
y_dims
.
size
(),
2UL
,
platform
::
errors
::
InvalidArgument
(
"The input(Y) must be a 2D Tensor."
));
PADDLE_ENFORCE_EQ
(
weight_dims
.
size
(),
3UL
,
platform
::
errors
::
InvalidArgument
(
"Expected the input(Weight) is a 3D "
"tensor. But received %dD tensor."
,
weight_dims
.
size
()));
if
(
ctx
->
IsRuntime
()
||
(
x_dims
[
0
]
>
0
&&
y_dims
[
0
]
>
0
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
y_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"The first dimension(batch_size) of input(X) must be "
"equal to the first dimension of the input(Y)."
));
}
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
weight_dims
[
1
],
platform
::
errors
::
InvalidArgument
(
"The second dimension of input(X) must be equal to "
"the second dimension of the input(Weight)."
));
PADDLE_ENFORCE_EQ
(
y_dims
[
1
],
weight_dims
[
2
],
platform
::
errors
::
InvalidArgument
(
"The second dimension of input(Y) must be equal to "
"the third dimension of the input(Weight)."
));
if
(
ctx
->
HasInput
(
"Bias"
))
{
auto
bias_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
bias_dims
.
size
(),
2UL
,
platform
::
errors
::
InvalidArgument
(
"The Input(Bias) must be a 2-D tensor with "
"the 2nd dimension fixed to 1 (a row vector)."
));
PADDLE_ENFORCE_EQ
(
bias_dims
[
0
],
1UL
,
platform
::
errors
::
InvalidArgument
(
"The Input(Bias) must be a 2-D tensor with "
"the 2nd dimension fixed to 1 (a row vector)."
));
PADDLE_ENFORCE_EQ
(
bias_dims
[
1
],
weight_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"The second dimension of input(Bias) must be equal "
"to the first dimension of the input(Weight)."
));
}
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
weight_dims
[
0
]});
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
class
BilinearTensorProductOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -125,59 +59,6 @@ Where $W_i$ is the $i$-th slice of Input(Weight);
class
BilinearTensorProductOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"X"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(X) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Y"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Y) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Weight"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Weight) should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Out@GRAD) should not be null."
));
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputDim
(
"Y"
);
auto
weight_dims
=
ctx
->
GetInputDim
(
"Weight"
);
auto
out_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
PADDLE_ENFORCE_EQ
(
out_dims
.
size
(),
2UL
,
platform
::
errors
::
InvalidArgument
(
"The input(Out@GRAD) must be a 2D Tensor."
));
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
out_dims
[
0
],
platform
::
errors
::
InvalidArgument
(
"The first dimension(batch_size) of input(Out@GRAD) must be "
"equal to the first dimension of the Input(X)."
));
PADDLE_ENFORCE_EQ
(
weight_dims
[
0
],
out_dims
[
1
],
platform
::
errors
::
InvalidArgument
(
"The second dimension of input(Out@GRAD) must be equal to "
"the third dimension of the Input(Weight)."
));
auto
bias_grad_name
=
framework
::
GradVarName
(
"Bias"
);
if
(
ctx
->
HasOutput
(
bias_grad_name
))
{
ctx
->
SetOutputDim
(
bias_grad_name
,
{
1
,
out_dims
[
1
]});
}
auto
x_grad_name
=
framework
::
GradVarName
(
"X"
);
auto
y_grad_name
=
framework
::
GradVarName
(
"Y"
);
auto
weight_grad_name
=
framework
::
GradVarName
(
"Weight"
);
if
(
ctx
->
HasOutput
(
x_grad_name
))
{
ctx
->
SetOutputDim
(
x_grad_name
,
x_dims
);
}
if
(
ctx
->
HasOutput
(
y_grad_name
))
{
ctx
->
SetOutputDim
(
y_grad_name
,
y_dims
);
}
if
(
ctx
->
HasOutput
(
weight_grad_name
))
{
ctx
->
SetOutputDim
(
weight_grad_name
,
weight_dims
);
}
}
};
template
<
typename
T
>
...
...
@@ -208,21 +89,20 @@ class BilinearTensorProductGradOpMaker
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
DELCARE_INFER_SHAPE_FUNCTOR
(
bilinear_tensor_product
,
BilinearTensorProductInferShapeFunctor
,
PT_INFER_META
(
phi
::
BilinearTensorProductInferMeta
));
DELCARE_INFER_SHAPE_FUNCTOR
(
bilinear_tensor_product_grad
,
BilinearTensorProductGradInferShapeFunctor
,
PT_INFER_META
(
phi
::
BilinearTensorProductGradInferMeta
));
REGISTER_OPERATOR
(
bilinear_tensor_product
,
ops
::
BilinearTensorProductOp
,
ops
::
BilinearTensorProductOpMaker
,
ops
::
BilinearTensorProductGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
BilinearTensorProductGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
ops
::
BilinearTensorProductGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
BilinearTensorProductInferShapeFunctor
);
REGISTER_OPERATOR
(
bilinear_tensor_product_grad
,
ops
::
BilinearTensorProductOpGrad
);
REGISTER_OP_CPU_KERNEL
(
bilinear_tensor_product
,
ops
::
BilinearTensorProductKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
BilinearTensorProductKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
bilinear_tensor_product_grad
,
ops
::
BilinearTensorProductGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
BilinearTensorProductGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
ops
::
BilinearTensorProductOpGrad
,
BilinearTensorProductGradInferShapeFunctor
);
paddle/fluid/operators/bilinear_tensor_product_op.cu
已删除
100644 → 0
浏览文件 @
a456dda6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/bilinear_tensor_product_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
bilinear_tensor_product
,
ops
::
BilinearTensorProductKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
BilinearTensorProductKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
bilinear_tensor_product_grad
,
ops
::
BilinearTensorProductGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
BilinearTensorProductGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/bilinear_tensor_product_op.h
已删除
100644 → 0
浏览文件 @
a456dda6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
T
>
class
BilinearTensorProductKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
y_mat
=
EigenMatrix
<
T
>::
From
(
*
y
);
auto
output_mat
=
EigenMatrix
<
T
>::
From
(
*
out
);
auto
batch_size
=
x
->
dims
()[
0
];
auto
weight_dims
=
weight
->
dims
();
int
out_dim
=
weight_dims
[
0
];
auto
x_dim
=
weight_dims
[
1
];
auto
y_dim
=
weight_dims
[
2
];
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
// Create the intermediate variable to calculate the result of
// Input(X) multiplied by Input(Weight_i), the formula is:
// left_mul = X Weight_i.
Tensor
left_mul
;
left_mul
.
mutable_data
<
T
>
(
phi
::
make_ddim
({
batch_size
,
y_dim
}),
ctx
.
GetPlace
());
auto
left_mul_mat
=
EigenMatrix
<
T
>::
From
(
left_mul
);
for
(
int
i
=
0
;
i
<
out_dim
;
++
i
)
{
auto
output_col_vec
=
output_mat
.
chip
(
i
,
1
);
Tensor
weight_mat
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
phi
::
make_ddim
({
x_dim
,
y_dim
}));
phi
::
funcs
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
).
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
y_dim
,
x_dim
,
1
,
x
->
data
<
T
>
(),
weight_mat
.
data
<
T
>
(),
0
,
left_mul
.
data
<
T
>
());
output_col_vec
.
device
(
place
)
=
(
left_mul_mat
*
y_mat
).
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
));
}
if
(
bias
)
{
auto
bias_vec
=
EigenMatrix
<
T
>::
From
(
*
bias
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
batch_size
,
1
);
output_mat
.
device
(
place
)
=
bias_vec
.
broadcast
(
bcast
)
+
output_mat
;
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
BilinearTensorProductGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
const
Tensor
*
weight
=
ctx
.
Input
<
Tensor
>
(
"Weight"
);
Tensor
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
Tensor
*
d_y
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
Tensor
*
d_weight
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
Tensor
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
Tensor
*
d_out
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
batch_size
=
x
->
dims
()[
0
];
auto
weight_dims
=
weight
->
dims
();
int
out_dim
=
weight_dims
[
0
];
auto
x_dim
=
weight_dims
[
1
];
auto
y_dim
=
weight_dims
[
2
];
auto
x_mat
=
EigenMatrix
<
T
>::
From
(
*
x
);
auto
y_mat
=
EigenMatrix
<
T
>::
From
(
*
y
);
auto
d_out_mat
=
EigenMatrix
<
T
>::
From
(
*
d_out
);
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
// Create the intermediate variable to calculate the Output(Y@Grad).
Tensor
x_scale
;
x_scale
.
mutable_data
<
T
>
(
phi
::
make_ddim
({
batch_size
,
x_dim
}),
ctx
.
GetPlace
());
auto
x_scale_mat
=
EigenMatrix
<
T
>::
From
(
x_scale
);
// Create the intermediate variable to calculate the Output(X@Grad).
Tensor
y_scale
;
y_scale
.
mutable_data
<
T
>
(
phi
::
make_ddim
({
batch_size
,
y_dim
}),
ctx
.
GetPlace
());
auto
y_scale_mat
=
EigenMatrix
<
T
>::
From
(
y_scale
);
phi
::
funcs
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_x
,
static_cast
<
T
>
(
0
));
}
if
(
d_y
)
{
d_y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_y
,
static_cast
<
T
>
(
0
));
}
if
(
d_weight
)
{
d_weight
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
}
auto
blas
=
phi
::
funcs
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
// Caculate the Output(X@Grad) and Output(Y@Grad).
if
(
d_x
||
d_y
||
d_weight
)
{
Eigen
::
DSizes
<
int
,
2
>
bcast_for_x
(
1
,
y_dim
);
Eigen
::
DSizes
<
int
,
2
>
bcast_for_y
(
1
,
x_dim
);
Eigen
::
DSizes
<
int
,
2
>
bcast_for_weight
(
1
,
x_dim
);
for
(
int
i
=
0
;
i
<
out_dim
;
++
i
)
{
Tensor
weight_i
=
weight
->
Slice
(
i
,
i
+
1
).
Resize
(
phi
::
make_ddim
({
x_dim
,
y_dim
}));
auto
output_vec
=
d_out_mat
.
chip
(
i
,
1
);
if
(
d_x
)
{
y_scale_mat
.
device
(
place
)
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_x
)
*
y_mat
;
blas
.
GEMM
(
CblasNoTrans
,
CblasTrans
,
batch_size
,
x_dim
,
y_dim
,
1
,
y_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
d_x
->
data
<
T
>
());
}
if
(
d_y
||
d_weight
)
{
auto
output_vec_y
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_y
);
x_scale_mat
.
device
(
place
)
=
output_vec_y
*
x_mat
;
if
(
d_y
)
{
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
y_dim
,
x_dim
,
1
,
x_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
d_y
->
data
<
T
>
());
}
if
(
d_weight
)
{
Tensor
d_weight_i
=
d_weight
->
Slice
(
i
,
i
+
1
).
Resize
(
phi
::
make_ddim
({
x_dim
,
y_dim
}));
blas
.
GEMM
(
CblasTrans
,
CblasNoTrans
,
x_dim
,
y_dim
,
batch_size
,
1
,
x_scale
.
data
<
T
>
(),
y
->
data
<
T
>
(),
0
,
d_weight_i
.
data
<
T
>
());
}
}
}
}
// calculate the gradient of Input(Bias).
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_bias_mat
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
d_bias
);
d_bias_mat
.
device
(
place
)
=
d_out_mat
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
0
));
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/phi/infermeta/backward.cc
浏览文件 @
de8f2748
...
...
@@ -16,6 +16,54 @@ limitations under the License. */
namespace
phi
{
void
BilinearTensorProductGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
weight
,
const
MetaTensor
&
dout
,
MetaTensor
*
dx
,
MetaTensor
*
dy
,
MetaTensor
*
dweight
,
MetaTensor
*
dbias
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
auto
weight_dims
=
weight
.
dims
();
auto
out_dims
=
dout
.
dims
();
PADDLE_ENFORCE_EQ
(
out_dims
.
size
(),
2UL
,
errors
::
InvalidArgument
(
"The input(Out@GRAD) must be a 2D Tensor."
));
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
out_dims
[
0
],
errors
::
InvalidArgument
(
"The first dimension(batch_size) of input(Out@GRAD) must be "
"equal to the first dimension of the Input(X)."
));
PADDLE_ENFORCE_EQ
(
weight_dims
[
0
],
out_dims
[
1
],
errors
::
InvalidArgument
(
"The second dimension of input(Out@GRAD) must be equal to "
"the third dimension of the Input(Weight)."
));
if
(
dx
)
{
dx
->
set_dims
(
x_dims
);
dx
->
set_dtype
(
x
.
dtype
());
}
if
(
dy
)
{
dy
->
set_dims
(
y_dims
);
dy
->
set_dtype
(
y
.
dtype
());
}
if
(
dweight
)
{
dweight
->
set_dims
(
weight_dims
);
dweight
->
set_dtype
(
weight
.
dtype
());
}
if
(
dbias
)
{
dbias
->
set_dims
({
1
,
out_dims
[
1
]});
dbias
->
set_dtype
(
dout
.
dtype
());
}
}
void
GeneralBinaryGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
dx
,
...
...
paddle/phi/infermeta/backward.h
浏览文件 @
de8f2748
...
...
@@ -20,6 +20,15 @@ limitations under the License. */
namespace
phi
{
void
BilinearTensorProductGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
weight
,
const
MetaTensor
&
dout
,
MetaTensor
*
dx
,
MetaTensor
*
dy
,
MetaTensor
*
dweight
,
MetaTensor
*
dbias
);
void
GeneralBinaryGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
dx
,
...
...
paddle/phi/infermeta/multiary.cc
浏览文件 @
de8f2748
...
...
@@ -18,6 +18,72 @@ limitations under the License. */
#include "paddle/phi/kernels/funcs/concat_funcs.h"
namespace
phi
{
void
BilinearTensorProductInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
weight
,
paddle
::
optional
<
const
MetaTensor
&>
bias
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
auto
weight_dims
=
weight
.
dims
();
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2UL
,
errors
::
InvalidArgument
(
"The input(X) must be a 2D Tensor."
));
PADDLE_ENFORCE_EQ
(
y_dims
.
size
(),
2UL
,
errors
::
InvalidArgument
(
"The input(Y) must be a 2D Tensor."
));
PADDLE_ENFORCE_EQ
(
weight_dims
.
size
(),
3UL
,
errors
::
InvalidArgument
(
"Expected the input(Weight) is a 3D tensor. But received %dD tensor."
,
weight_dims
.
size
()));
if
(
config
.
is_runtime
||
(
x_dims
[
0
]
>
0
&&
y_dims
[
0
]
>
0
))
{
PADDLE_ENFORCE_EQ
(
x_dims
[
0
],
y_dims
[
0
],
errors
::
InvalidArgument
(
"The first dimension(batch_size) of input(X) must be "
"equal to the first dimension of the input(Y)."
));
}
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
weight_dims
[
1
],
errors
::
InvalidArgument
(
"The second dimension of input(X) must be equal to "
"the second dimension of the input(Weight)."
));
PADDLE_ENFORCE_EQ
(
y_dims
[
1
],
weight_dims
[
2
],
errors
::
InvalidArgument
(
"The second dimension of input(Y) must be equal to "
"the third dimension of the input(Weight)."
));
if
(
bias
.
get_ptr
())
{
auto
bias_dims
=
bias
->
dims
();
PADDLE_ENFORCE_EQ
(
bias_dims
.
size
(),
2UL
,
errors
::
InvalidArgument
(
"The Input(Bias) must be a 2-D tensor with "
"the 2nd dimension fixed to 1 (a row vector)."
));
PADDLE_ENFORCE_EQ
(
bias_dims
[
0
],
1UL
,
errors
::
InvalidArgument
(
"The Input(Bias) must be a 2-D tensor with "
"the 2nd dimension fixed to 1 (a row vector)."
));
PADDLE_ENFORCE_EQ
(
bias_dims
[
1
],
weight_dims
[
0
],
errors
::
InvalidArgument
(
"The second dimension of input(Bias) must be equal "
"to the first dimension of the input(Weight)."
));
}
out
->
set_dims
({
x_dims
[
0
],
weight_dims
[
0
]});
out
->
share_lod
(
x
);
out
->
set_dtype
(
x
.
dtype
());
}
void
ConcatInferMeta
(
const
std
::
vector
<
MetaTensor
>&
x
,
const
Scalar
&
axis_scalar
,
MetaTensor
*
out
,
...
...
paddle/phi/infermeta/multiary.h
浏览文件 @
de8f2748
...
...
@@ -18,6 +18,13 @@ limitations under the License. */
#include "paddle/phi/core/meta_tensor.h"
namespace
phi
{
void
BilinearTensorProductInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
weight
,
paddle
::
optional
<
const
MetaTensor
&>
bias
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
ConcatInferMeta
(
const
std
::
vector
<
MetaTensor
>&
x
,
const
Scalar
&
axis_scalar
,
MetaTensor
*
out
,
...
...
paddle/phi/kernels/bilinear_tensor_product_grad_kernel.h
0 → 100644
浏览文件 @
de8f2748
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
BilinearTensorProductGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
weight
,
const
DenseTensor
&
dout
,
DenseTensor
*
dx
,
DenseTensor
*
dy
,
DenseTensor
*
dweight
,
DenseTensor
*
dbias
);
}
// namespace phi
paddle/phi/kernels/bilinear_tensor_product_kernel.h
0 → 100644
浏览文件 @
de8f2748
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/utils/optional.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
BilinearTensorProductKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
weight
,
paddle
::
optional
<
const
DenseTensor
&>
bias
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/kernels/cpu/bilinear_tensor_product_grad_kernel.cc
0 → 100644
浏览文件 @
de8f2748
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/bilinear_tensor_product_grad_kernel.h"
#include "paddle/phi/kernels/impl/bilinear_tensor_product_grad_kernel_impl.h"
#include "paddle/phi/core/kernel_registry.h"
PD_REGISTER_KERNEL
(
bilinear_tensor_product_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
BilinearTensorProductGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/cpu/bilinear_tensor_product_kernel.cc
0 → 100644
浏览文件 @
de8f2748
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/bilinear_tensor_product_kernel.h"
#include "paddle/phi/kernels/impl/bilinear_tensor_product_kernel_impl.h"
#include "paddle/phi/core/kernel_registry.h"
PD_REGISTER_KERNEL
(
bilinear_tensor_product
,
CPU
,
ALL_LAYOUT
,
phi
::
BilinearTensorProductKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/bilinear_tensor_product_grad_kernel.cu
0 → 100644
浏览文件 @
de8f2748
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/bilinear_tensor_product_grad_kernel.h"
#include "paddle/phi/kernels/impl/bilinear_tensor_product_grad_kernel_impl.h"
#include "paddle/phi/core/kernel_registry.h"
PD_REGISTER_KERNEL
(
bilinear_tensor_product_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
BilinearTensorProductGradKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/bilinear_tensor_product_kernel.cu
0 → 100644
浏览文件 @
de8f2748
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/bilinear_tensor_product_kernel.h"
#include "paddle/phi/kernels/impl/bilinear_tensor_product_kernel_impl.h"
#include "paddle/phi/core/kernel_registry.h"
PD_REGISTER_KERNEL
(
bilinear_tensor_product
,
GPU
,
ALL_LAYOUT
,
phi
::
BilinearTensorProductKernel
,
float
,
double
)
{}
paddle/phi/kernels/impl/bilinear_tensor_product_grad_kernel_impl.h
0 → 100644
浏览文件 @
de8f2748
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
BilinearTensorProductGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
weight
,
const
DenseTensor
&
dout
,
DenseTensor
*
dx
,
DenseTensor
*
dy
,
DenseTensor
*
dweight
,
DenseTensor
*
dbias
)
{
auto
batch_size
=
x
.
dims
()[
0
];
auto
weight_dims
=
weight
.
dims
();
int
out_dim
=
weight_dims
[
0
];
auto
x_dim
=
weight_dims
[
1
];
auto
y_dim
=
weight_dims
[
2
];
auto
x_mat
=
EigenMatrix
<
T
>::
From
(
x
);
auto
y_mat
=
EigenMatrix
<
T
>::
From
(
y
);
auto
dout_mat
=
EigenMatrix
<
T
>::
From
(
dout
);
auto
&
place
=
*
ctx
.
eigen_device
();
// Create the intermediate variable to calculate the Output(Y@Grad).
DenseTensor
x_scale
;
x_scale
.
Resize
(
make_ddim
({
batch_size
,
x_dim
}));
ctx
.
template
Alloc
<
T
>(
&
x_scale
);
auto
x_scale_mat
=
EigenMatrix
<
T
>::
From
(
x_scale
);
// Create the intermediate variable to calculate the Output(X@Grad).
DenseTensor
y_scale
;
y_scale
.
Resize
(
make_ddim
({
batch_size
,
y_dim
}));
ctx
.
template
Alloc
<
T
>(
&
y_scale
);
auto
y_scale_mat
=
EigenMatrix
<
T
>::
From
(
y_scale
);
funcs
::
SetConstant
<
Context
,
T
>
set_zero
;
if
(
dx
)
{
ctx
.
template
Alloc
<
T
>(
dx
);
set_zero
(
ctx
,
dx
,
static_cast
<
T
>
(
0
));
}
if
(
dy
)
{
ctx
.
template
Alloc
<
T
>(
dy
);
set_zero
(
ctx
,
dy
,
static_cast
<
T
>
(
0
));
}
if
(
dweight
)
{
ctx
.
template
Alloc
<
T
>(
dweight
);
}
auto
blas
=
funcs
::
GetBlas
<
Context
,
T
>
(
ctx
);
// Caculate the Output(X@Grad) and Output(Y@Grad).
if
(
dx
||
dy
||
dweight
)
{
Eigen
::
DSizes
<
int
,
2
>
bcast_for_x
(
1
,
y_dim
);
Eigen
::
DSizes
<
int
,
2
>
bcast_for_y
(
1
,
x_dim
);
Eigen
::
DSizes
<
int
,
2
>
bcast_for_weight
(
1
,
x_dim
);
for
(
int
i
=
0
;
i
<
out_dim
;
++
i
)
{
DenseTensor
weight_i
=
weight
.
Slice
(
i
,
i
+
1
).
Resize
(
make_ddim
({
x_dim
,
y_dim
}));
auto
output_vec
=
dout_mat
.
chip
(
i
,
1
);
if
(
dx
)
{
y_scale_mat
.
device
(
place
)
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_x
)
*
y_mat
;
blas
.
GEMM
(
CblasNoTrans
,
CblasTrans
,
batch_size
,
x_dim
,
y_dim
,
1
,
y_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
dx
->
data
<
T
>
());
}
if
(
dy
||
dweight
)
{
auto
output_vec_y
=
output_vec
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
batch_size
,
1
))
.
broadcast
(
bcast_for_y
);
x_scale_mat
.
device
(
place
)
=
output_vec_y
*
x_mat
;
if
(
dy
)
{
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
y_dim
,
x_dim
,
1
,
x_scale
.
data
<
T
>
(),
weight_i
.
data
<
T
>
(),
1
,
dy
->
data
<
T
>
());
}
if
(
dweight
)
{
DenseTensor
dweight_i
=
dweight
->
Slice
(
i
,
i
+
1
).
Resize
(
make_ddim
({
x_dim
,
y_dim
}));
blas
.
GEMM
(
CblasTrans
,
CblasNoTrans
,
x_dim
,
y_dim
,
batch_size
,
1
,
x_scale
.
data
<
T
>
(),
y
.
data
<
T
>
(),
0
,
dweight_i
.
data
<
T
>
());
}
}
}
}
// calculate the gradient of Input(Bias).
if
(
dbias
)
{
ctx
.
template
Alloc
<
T
>(
dbias
);
auto
dbias_mat
=
EigenVector
<
T
>::
Flatten
(
*
dbias
);
dbias_mat
.
device
(
place
)
=
dout_mat
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
0
));
}
}
}
// namespace phi
paddle/phi/kernels/impl/bilinear_tensor_product_kernel_impl.h
0 → 100644
浏览文件 @
de8f2748
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/utils/optional.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
BilinearTensorProductKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
weight
,
paddle
::
optional
<
const
DenseTensor
&>
bias
,
DenseTensor
*
out
)
{
ctx
.
template
Alloc
<
T
>(
out
);
auto
y_mat
=
EigenMatrix
<
T
>::
From
(
y
);
auto
output_mat
=
EigenMatrix
<
T
>::
From
(
*
out
);
auto
batch_size
=
x
.
dims
()[
0
];
auto
weight_dims
=
weight
.
dims
();
int
out_dim
=
weight_dims
[
0
];
auto
x_dim
=
weight_dims
[
1
];
auto
y_dim
=
weight_dims
[
2
];
auto
&
place
=
*
ctx
.
eigen_device
();
// Create the intermediate variable to calculate the result of
// Input(X) multiplied by Input(Weight_i), the formula is:
// left_mul = X Weight_i.
DenseTensor
left_mul
;
left_mul
.
Resize
(
phi
::
make_ddim
({
batch_size
,
y_dim
}));
ctx
.
template
Alloc
<
T
>(
&
left_mul
);
auto
left_mul_mat
=
EigenMatrix
<
T
>::
From
(
left_mul
);
for
(
int
i
=
0
;
i
<
out_dim
;
++
i
)
{
auto
output_col_vec
=
output_mat
.
chip
(
i
,
1
);
DenseTensor
weight_mat
=
weight
.
Slice
(
i
,
i
+
1
).
Resize
(
phi
::
make_ddim
({
x_dim
,
y_dim
}));
phi
::
funcs
::
GetBlas
<
Context
,
T
>
(
ctx
).
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
batch_size
,
y_dim
,
x_dim
,
1
,
x
.
data
<
T
>
(),
weight_mat
.
data
<
T
>
(),
0
,
left_mul
.
data
<
T
>
());
output_col_vec
.
device
(
place
)
=
(
left_mul_mat
*
y_mat
).
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
));
}
if
(
bias
.
get_ptr
())
{
auto
bias_vec
=
EigenMatrix
<
T
>::
From
(
*
(
bias
.
get_ptr
()));
Eigen
::
DSizes
<
int
,
2
>
bcast
(
batch_size
,
1
);
output_mat
.
device
(
place
)
=
bias_vec
.
broadcast
(
bcast
)
+
output_mat
;
}
}
}
// namespace phi
paddle/phi/ops/compat/bilinear_tensor_product_sig.cc
0 → 100644
浏览文件 @
de8f2748
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
BilinearTensorProductOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"bilinear_tensor_product"
,
{
"X"
,
"Y"
,
"Weight"
,
"Bias"
},
{},
{
"Out"
});
}
KernelSignature
BilinearTensorProductGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"bilinear_tensor_product_grad"
,
{
"X"
,
"Y"
,
"Weight"
,
GradVarName
(
"Out"
)},
{},
{
GradVarName
(
"X"
),
GradVarName
(
"Y"
),
GradVarName
(
"Weight"
),
GradVarName
(
"Bias"
)});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
bilinear_tensor_product
,
phi
::
BilinearTensorProductOpArgumentMapping
);
PD_REGISTER_ARG_MAPPING_FN
(
bilinear_tensor_product_grad
,
phi
::
BilinearTensorProductGradOpArgumentMapping
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录