Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f5ec0314
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f5ec0314
编写于
3月 07, 2022
作者:
A
Aurelius84
提交者:
GitHub
3月 07, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Phi]Migrate Adamax and Adadelta Optimizer Op into Phi (#40173)
* [Phi]Migrate Adamax into phi * Add adadelta kernel
上级
da3de72d
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
429 addition
and
346 deletion
+429
-346
paddle/fluid/operators/optimizers/adadelta_op.cc
paddle/fluid/operators/optimizers/adadelta_op.cc
+12
-76
paddle/fluid/operators/optimizers/adadelta_op.cu
paddle/fluid/operators/optimizers/adadelta_op.cu
+0
-19
paddle/fluid/operators/optimizers/adadelta_op.h
paddle/fluid/operators/optimizers/adadelta_op.h
+0
-84
paddle/fluid/operators/optimizers/adamax_op.cc
paddle/fluid/operators/optimizers/adamax_op.cc
+12
-66
paddle/fluid/operators/optimizers/adamax_op.cu
paddle/fluid/operators/optimizers/adamax_op.cu
+0
-19
paddle/fluid/operators/optimizers/adamax_op.h
paddle/fluid/operators/optimizers/adamax_op.h
+0
-82
paddle/phi/infermeta/multiary.cc
paddle/phi/infermeta/multiary.cc
+92
-0
paddle/phi/infermeta/multiary.h
paddle/phi/infermeta/multiary.h
+24
-0
paddle/phi/kernels/adadelta_kernel.h
paddle/phi/kernels/adadelta_kernel.h
+33
-0
paddle/phi/kernels/adamax_kernel.h
paddle/phi/kernels/adamax_kernel.h
+36
-0
paddle/phi/kernels/cpu/adadelta_kernel.cc
paddle/phi/kernels/cpu/adadelta_kernel.cc
+22
-0
paddle/phi/kernels/cpu/adamax_kernel.cc
paddle/phi/kernels/cpu/adamax_kernel.cc
+21
-0
paddle/phi/kernels/gpu/adadelta_kernel.cu
paddle/phi/kernels/gpu/adadelta_kernel.cu
+22
-0
paddle/phi/kernels/gpu/adamax_kernel.cu
paddle/phi/kernels/gpu/adamax_kernel.cu
+21
-0
paddle/phi/kernels/impl/adadelta_kernel_impl.h
paddle/phi/kernels/impl/adadelta_kernel_impl.h
+65
-0
paddle/phi/kernels/impl/adamax_kernel_impl.h
paddle/phi/kernels/impl/adamax_kernel_impl.h
+69
-0
未找到文件。
paddle/fluid/operators/optimizers/adadelta_op.cc
浏览文件 @
f5ec0314
...
...
@@ -12,7 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/optimizers/adadelta_op.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -23,77 +26,6 @@ class AdadeltaOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Param"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Param) of AdadeltaOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"Grad"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Grad) of AdadeltaOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"AvgSquaredGrad"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(AvgSquaredGrad) of AdadeltaOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasInput
(
"AvgSquaredUpdate"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Input(AvgSquaredUpdate) of AdadeltaOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputsVarType
(
"Param"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
true
,
platform
::
errors
::
InvalidArgument
(
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
()));
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputsVarType
(
"Grad"
).
front
()
==
framework
::
proto
::
VarType
::
LOD_TENSOR
,
true
,
platform
::
errors
::
InvalidArgument
(
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Grad"
).
front
(),
ctx
->
GetInputsVarType
(
"Grad"
).
front
()));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"ParamOut"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(ParamOut) of AdadeltaOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"AvgSquaredGradOut"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(AvgSquaredGradOut) of AdadeltaOp should not be null."
));
PADDLE_ENFORCE_EQ
(
ctx
->
HasOutput
(
"AvgSquaredUpdateOut"
),
true
,
platform
::
errors
::
InvalidArgument
(
"Output(AvgSquaredUpdateOut) of AdadeltaOp should not be null."
));
auto
param_dim
=
ctx
->
GetInputDim
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"Grad"
),
platform
::
errors
::
InvalidArgument
(
"Param and grad input of AdadeltaOp should have same dimension."
));
PADDLE_ENFORCE_NE
(
phi
::
product
(
ctx
->
GetInputDim
(
"AvgSquaredGrad"
)),
0
,
platform
::
errors
::
InvalidArgument
(
"Maybe the Input variable AvgSquaredGrad has not "
"been initialized. You may need to confirm if you put "
"exe.run(startup_program) after optimizer.minimize "
"function."
));
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"AvgSquaredGrad"
),
platform
::
errors
::
InvalidArgument
(
"Param and AvgSquaredGrad input of AdadeltaOp "
"should have same dimension"
));
PADDLE_ENFORCE_EQ
(
param_dim
,
ctx
->
GetInputDim
(
"AvgSquaredUpdate"
),
platform
::
errors
::
InvalidArgument
(
"Param and AvgSquaredUpdate input of AdadeltaOp "
"should have same dimension"
));
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"AvgSquaredGradOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"AvgSquaredUpdateOut"
,
param_dim
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
...
...
@@ -149,7 +81,11 @@ $$
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
adadelta
,
ops
::
AdadeltaOp
,
ops
::
AdadeltaOpMaker
);
REGISTER_OP_CPU_KERNEL
(
adadelta
,
ops
::
AdadeltaOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
AdadeltaOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
namespace
ops
=
paddle
::
operators
;
DELCARE_INFER_SHAPE_FUNCTOR
(
adadelta
,
AdadeltaInferMetaFunctor
,
PT_INFER_META
(
phi
::
AdadeltaInferMeta
));
REGISTER_OPERATOR
(
adadelta
,
ops
::
AdadeltaOp
,
ops
::
AdadeltaOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
AdadeltaInferMetaFunctor
);
paddle/fluid/operators/optimizers/adadelta_op.cu
已删除
100644 → 0
浏览文件 @
da3de72d
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/optimizers/adadelta_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
adadelta
,
ops
::
AdadeltaOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
AdadeltaOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/optimizers/adadelta_op.h
已删除
100644 → 0
浏览文件 @
da3de72d
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
AdadeltaOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Grad"
).
front
(),
framework
::
ToTypeName
(
grad_var
->
Type
())));
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
avg_squared_grad_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"AvgSquaredGradOut"
);
auto
avg_squared_update_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"AvgSquaredUpdateOut"
);
param_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
avg_squared_grad_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
avg_squared_update_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
rho
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"rho"
));
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
param
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
));
auto
grad
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
));
// Squared gradient accumulator
auto
avg_squared_grad
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"AvgSquaredGrad"
));
// Squared updates accumulator
auto
avg_squared_update
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"AvgSquaredUpdate"
));
auto
param_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out_tensor
);
auto
avg_squared_grad_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
avg_squared_grad_out_tensor
);
auto
avg_squared_update_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
avg_squared_update_out_tensor
);
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
avg_squared_grad_out
.
device
(
place
)
=
rho
*
avg_squared_grad
+
(
1
-
rho
)
*
grad
.
square
();
auto
update
=
-
((
avg_squared_update
+
epsilon
)
/
(
avg_squared_grad_out
+
epsilon
))
.
sqrt
()
*
grad
;
avg_squared_update_out
.
device
(
place
)
=
rho
*
avg_squared_update
+
(
1
-
rho
)
*
update
.
square
();
param_out
.
device
(
place
)
=
param
+
update
;
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/optimizers/adamax_op.cc
浏览文件 @
f5ec0314
...
...
@@ -12,7 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/optimizers/adamax_op.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -22,67 +25,6 @@ class AdamaxOp : public framework::OperatorWithKernel {
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Param"
),
"Input"
,
"Param"
,
"Adamax"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Grad"
),
"Input"
,
"Grad"
,
"Adamax"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Moment"
),
"Input"
,
"Moment"
,
"Adamax"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"InfNorm"
),
"Input"
,
"InfNorm"
,
"Adamax"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"LearningRate"
),
"Input"
,
"LearningRate"
,
"Adamax"
);
OP_INOUT_CHECK
(
ctx
->
HasInput
(
"Beta1Pow"
),
"Input"
,
"Beta1Pow"
,
"Adamax"
);
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputsVarType
(
"Param"
).
front
(),
framework
::
proto
::
VarType
::
LOD_TENSOR
,
platform
::
errors
::
InvalidArgument
(
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Param"
).
front
(),
ctx
->
GetInputsVarType
(
"Param"
).
front
()));
PADDLE_ENFORCE_EQ
(
ctx
->
GetInputsVarType
(
"Grad"
).
front
(),
framework
::
proto
::
VarType
::
LOD_TENSOR
,
platform
::
errors
::
InvalidArgument
(
"The input var's type should be LoDTensor, but the received is %s"
,
ctx
->
Inputs
(
"Grad"
).
front
(),
ctx
->
GetInputsVarType
(
"Grad"
).
front
()));
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output"
,
"ParamOut"
,
"Adamax"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"MomentOut"
),
"Output"
,
"MomentOut"
,
"Adamax"
);
OP_INOUT_CHECK
(
ctx
->
HasOutput
(
"InfNormOut"
),
"Output"
,
"InfNormOut"
,
"Adamax"
);
auto
lr_dims
=
ctx
->
GetInputDim
(
"LearningRate"
);
PADDLE_ENFORCE_NE
(
phi
::
product
(
lr_dims
),
0
,
platform
::
errors
::
InvalidArgument
(
"Maybe the Input variable LearningRate has not "
"been initialized. You may need to confirm "
"if you put exe.run(startup_program) "
"after optimizer.minimize function."
));
PADDLE_ENFORCE_EQ
(
phi
::
product
(
lr_dims
),
1
,
platform
::
errors
::
InvalidArgument
(
"Learning rate should have 1 dimension"
));
auto
beta1_pow_dims
=
ctx
->
GetInputDim
(
"Beta1Pow"
);
PADDLE_ENFORCE_EQ
(
phi
::
product
(
beta1_pow_dims
),
1
,
platform
::
errors
::
InvalidArgument
(
"Beta1 power accumulator should have 1 dimension"
));
auto
param_dims
=
ctx
->
GetInputDim
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Grad"
),
platform
::
errors
::
InvalidArgument
(
"Param and Grad input of AdamaxOp should have same dimension"
));
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"Moment"
),
platform
::
errors
::
InvalidArgument
(
"Param and Moment input of AdamaxOp should have same dimension"
));
PADDLE_ENFORCE_EQ
(
param_dims
,
ctx
->
GetInputDim
(
"InfNorm"
),
platform
::
errors
::
InvalidArgument
(
"Param and InfNorm input of AdamaxOp should have same dimension"
));
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dims
);
ctx
->
SetOutputDim
(
"MomentOut"
,
param_dims
);
ctx
->
SetOutputDim
(
"InfNormOut"
,
param_dims
);
}
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
...
...
@@ -150,7 +92,11 @@ division by 0 error.
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
adamax
,
ops
::
AdamaxOp
,
ops
::
AdamaxOpMaker
);
REGISTER_OP_CPU_KERNEL
(
adamax
,
ops
::
AdamaxOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
AdamaxOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
DELCARE_INFER_SHAPE_FUNCTOR
(
adamax
,
AdamaxInferMetaFunctor
,
PT_INFER_META
(
phi
::
AdamaxInferMeta
));
REGISTER_OPERATOR
(
adamax
,
ops
::
AdamaxOp
,
ops
::
AdamaxOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
AdamaxInferMetaFunctor
);
paddle/fluid/operators/optimizers/adamax_op.cu
已删除
100644 → 0
浏览文件 @
da3de72d
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/optimizers/adamax_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
adamax
,
ops
::
AdamaxOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
AdamaxOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/optimizers/adamax_op.h
已删除
100644 → 0
浏览文件 @
da3de72d
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
AdamaxOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
param_var
=
ctx
.
InputVar
(
"Param"
);
PADDLE_ENFORCE_EQ
(
param_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Param"
).
front
(),
framework
::
ToTypeName
(
param_var
->
Type
())));
const
auto
*
grad_var
=
ctx
.
InputVar
(
"Grad"
);
PADDLE_ENFORCE_EQ
(
grad_var
->
IsType
<
framework
::
LoDTensor
>
(),
true
,
platform
::
errors
::
InvalidArgument
(
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s"
,
ctx
.
InputNames
(
"Grad"
).
front
(),
framework
::
ToTypeName
(
grad_var
->
Type
())));
auto
param_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"ParamOut"
);
auto
moment_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MomentOut"
);
auto
inf_norm_out_tensor
=
ctx
.
Output
<
framework
::
Tensor
>
(
"InfNormOut"
);
param_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
moment_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
inf_norm_out_tensor
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
beta1
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta1"
));
T
beta2
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"beta2"
));
T
epsilon
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
auto
param
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Param"
));
auto
grad
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Grad"
));
auto
moment
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Moment"
));
auto
inf_norm
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"InfNorm"
));
auto
lr
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"LearningRate"
));
auto
beta1_pow
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
framework
::
Tensor
>
(
"Beta1Pow"
));
auto
param_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
param_out_tensor
);
auto
moment_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
moment_out_tensor
);
auto
inf_norm_out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
inf_norm_out_tensor
);
auto
*
place
=
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
moment_out
.
device
(
*
place
)
=
beta1
*
moment
+
(
1
-
beta1
)
*
grad
;
inf_norm_out
.
device
(
*
place
)
=
grad
.
abs
().
cwiseMax
((
beta2
*
inf_norm
)
+
epsilon
);
auto
lr_t
=
lr
/
(
1
-
beta1_pow
);
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
moment_out_tensor
->
numel
());
param_out
.
device
(
*
place
)
=
param
-
lr_t
.
broadcast
(
m_dsize
)
*
(
moment_out
/
inf_norm_out
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/phi/infermeta/multiary.cc
浏览文件 @
f5ec0314
...
...
@@ -28,6 +28,98 @@ std::vector<DDim> GetMetaTensorsDim(const std::vector<MetaTensor*>& tensors) {
return
dims
;
}
void
AdamaxInferMeta
(
const
MetaTensor
&
param
,
const
MetaTensor
&
grad
,
const
MetaTensor
&
learning_rate
,
const
MetaTensor
&
moment
,
const
MetaTensor
&
inf_norm
,
const
MetaTensor
&
beta1_pow
,
float
beta1
,
float
beta2
,
float
epsilon
,
MetaTensor
*
param_out
,
MetaTensor
*
moment_out
,
MetaTensor
*
inf_norm_out
)
{
auto
lr_dims
=
learning_rate
.
dims
();
PADDLE_ENFORCE_NE
(
product
(
lr_dims
),
0
,
errors
::
InvalidArgument
(
"Maybe the Input variable LearningRate has not "
"been initialized. You may need to confirm "
"if you put exe.run(startup_program) "
"after optimizer.minimize function."
));
PADDLE_ENFORCE_EQ
(
product
(
lr_dims
),
1
,
errors
::
InvalidArgument
(
"Learning rate should have 1 dimension"
));
auto
beta1_pow_dims
=
beta1_pow
.
dims
();
PADDLE_ENFORCE_EQ
(
product
(
beta1_pow_dims
),
1
,
errors
::
InvalidArgument
(
"Beta1 power accumulator should have 1 dimension"
));
auto
param_dims
=
param
.
dims
();
PADDLE_ENFORCE_EQ
(
param_dims
,
grad
.
dims
(),
errors
::
InvalidArgument
(
"Param and Grad input of AdamaxOp should have same dimension"
));
PADDLE_ENFORCE_EQ
(
param_dims
,
moment
.
dims
(),
errors
::
InvalidArgument
(
"Param and Moment input of AdamaxOp should have same dimension"
));
PADDLE_ENFORCE_EQ
(
param_dims
,
inf_norm
.
dims
(),
errors
::
InvalidArgument
(
"Param and InfNorm input of AdamaxOp should have same dimension"
));
param_out
->
set_dims
(
param_dims
);
param_out
->
set_dtype
(
param
.
dtype
());
moment_out
->
set_dims
(
param_dims
);
moment_out
->
set_dtype
(
moment
.
dtype
());
inf_norm_out
->
set_dims
(
param_dims
);
inf_norm_out
->
set_dtype
(
inf_norm
.
dtype
());
}
void
AdadeltaInferMeta
(
const
MetaTensor
&
param
,
const
MetaTensor
&
grad
,
const
MetaTensor
&
avg_squared_grad
,
const
MetaTensor
&
avg_squared_update
,
float
rho
,
float
epsilon
,
MetaTensor
*
param_out
,
MetaTensor
*
avg_squared_grad_out
,
MetaTensor
*
avg_squared_update_out
)
{
auto
param_dims
=
param
.
dims
();
PADDLE_ENFORCE_EQ
(
param_dims
,
grad
.
dims
(),
errors
::
InvalidArgument
(
"Param and grad input of AdadeltaOp should have same dimension."
));
PADDLE_ENFORCE_EQ
(
param_dims
,
avg_squared_grad
.
dims
(),
errors
::
InvalidArgument
(
"Param and AvgSquaredGrad input of AdadeltaOp "
"should have same dimension"
));
PADDLE_ENFORCE_EQ
(
param_dims
,
avg_squared_update
.
dims
(),
errors
::
InvalidArgument
(
"Param and AvgSquaredUpdate input of AdadeltaOp "
"should have same dimension"
));
param_out
->
set_dims
(
param_dims
);
param_out
->
set_dtype
(
param
.
dtype
());
avg_squared_grad_out
->
set_dims
(
param_dims
);
avg_squared_grad_out
->
set_dtype
(
avg_squared_grad
.
dtype
());
avg_squared_update_out
->
set_dims
(
param_dims
);
avg_squared_update_out
->
set_dtype
(
avg_squared_update
.
dtype
());
}
void
BilinearTensorProductInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
weight
,
...
...
paddle/phi/infermeta/multiary.h
浏览文件 @
f5ec0314
...
...
@@ -39,4 +39,28 @@ void WhereInferMeta(const MetaTensor& condition,
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
);
void
AdamaxInferMeta
(
const
MetaTensor
&
param
,
const
MetaTensor
&
grad
,
const
MetaTensor
&
learning_rate
,
const
MetaTensor
&
moment
,
const
MetaTensor
&
inf_norm
,
const
MetaTensor
&
beta1_pow
,
float
beta1
,
float
beta2
,
float
epsilon
,
MetaTensor
*
param_out
,
MetaTensor
*
moment_out
,
MetaTensor
*
inf_norm_out
);
void
AdadeltaInferMeta
(
const
MetaTensor
&
param
,
const
MetaTensor
&
grad
,
const
MetaTensor
&
avg_squared_grad
,
const
MetaTensor
&
avg_squared_update
,
float
rho
,
float
epsilon
,
MetaTensor
*
param_out
,
MetaTensor
*
avg_squared_grad_out
,
MetaTensor
*
avg_squared_update_out
);
}
// namespace phi
paddle/phi/kernels/adadelta_kernel.h
0 → 100644
浏览文件 @
f5ec0314
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AdadeltaKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
DenseTensor
&
grad
,
const
DenseTensor
&
avg_squared_grad
,
const
DenseTensor
&
avg_squared_update
,
float
rho
,
float
epsilon
,
DenseTensor
*
param_out
,
DenseTensor
*
avg_squared_grad_out
,
DenseTensor
*
avg_squared_update_out
);
}
// namespace phi
paddle/phi/kernels/adamax_kernel.h
0 → 100644
浏览文件 @
f5ec0314
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AdamaxKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
DenseTensor
&
grad
,
const
DenseTensor
&
learning_rate
,
const
DenseTensor
&
moment
,
const
DenseTensor
&
inf_norm
,
const
DenseTensor
&
beta1_pow
,
float
beta1
,
float
beta2
,
float
epsilon
,
DenseTensor
*
param_out
,
DenseTensor
*
moment_out
,
DenseTensor
*
inf_norm_out
);
}
// namespace phi
paddle/phi/kernels/cpu/adadelta_kernel.cc
0 → 100644
浏览文件 @
f5ec0314
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/adadelta_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/adadelta_kernel_impl.h"
PD_REGISTER_KERNEL
(
adadelta
,
CPU
,
ALL_LAYOUT
,
phi
::
AdadeltaKernel
,
float
,
double
)
{}
paddle/phi/kernels/cpu/adamax_kernel.cc
0 → 100644
浏览文件 @
f5ec0314
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/adamax_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/adamax_kernel_impl.h"
PD_REGISTER_KERNEL
(
adamax
,
CPU
,
ALL_LAYOUT
,
phi
::
AdamaxKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/adadelta_kernel.cu
0 → 100644
浏览文件 @
f5ec0314
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/adadelta_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/adadelta_kernel_impl.h"
PD_REGISTER_KERNEL
(
adadelta
,
GPU
,
ALL_LAYOUT
,
phi
::
AdadeltaKernel
,
float
,
double
)
{}
paddle/phi/kernels/gpu/adamax_kernel.cu
0 → 100644
浏览文件 @
f5ec0314
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/adamax_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/adamax_kernel_impl.h"
PD_REGISTER_KERNEL
(
adamax
,
GPU
,
ALL_LAYOUT
,
phi
::
AdamaxKernel
,
float
,
double
)
{}
paddle/phi/kernels/impl/adadelta_kernel_impl.h
0 → 100644
浏览文件 @
f5ec0314
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/kernels/adadelta_kernel.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AdadeltaKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
DenseTensor
&
grad
,
const
DenseTensor
&
avg_squared_grad
,
const
DenseTensor
&
avg_squared_update
,
float
rho
,
float
epsilon
,
DenseTensor
*
param_out
,
DenseTensor
*
avg_squared_grad_out
,
DenseTensor
*
avg_squared_update_out
)
{
dev_ctx
.
template
Alloc
<
T
>(
param_out
);
dev_ctx
.
template
Alloc
<
T
>(
avg_squared_grad_out
);
dev_ctx
.
template
Alloc
<
T
>(
avg_squared_update_out
);
T
rho_
=
static_cast
<
T
>
(
rho
);
T
epsilon_
=
static_cast
<
T
>
(
epsilon
);
auto
eigen_param
=
EigenVector
<
T
>::
Flatten
(
param
);
auto
eigen_grad
=
EigenVector
<
T
>::
Flatten
(
grad
);
// Squared gradient accumulator
auto
eigen_avg_squared_grad
=
EigenVector
<
T
>::
Flatten
(
avg_squared_grad
);
// Squared updates accumulator
auto
eigen_avg_squared_update
=
EigenVector
<
T
>::
Flatten
(
avg_squared_update
);
auto
eigen_param_out
=
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
eigen_avg_squared_grad_out
=
EigenVector
<
T
>::
Flatten
(
*
avg_squared_grad_out
);
auto
eigen_avg_squared_update_out
=
EigenVector
<
T
>::
Flatten
(
*
avg_squared_update_out
);
auto
&
place
=
*
dev_ctx
.
eigen_device
();
eigen_avg_squared_grad_out
.
device
(
place
)
=
rho_
*
eigen_avg_squared_grad
+
(
1
-
rho_
)
*
eigen_grad
.
square
();
auto
update
=
-
((
eigen_avg_squared_update
+
epsilon_
)
/
(
eigen_avg_squared_grad_out
+
epsilon_
))
.
sqrt
()
*
eigen_grad
;
eigen_avg_squared_update_out
.
device
(
place
)
=
rho_
*
eigen_avg_squared_update
+
(
1
-
rho_
)
*
update
.
square
();
eigen_param_out
.
device
(
place
)
=
eigen_param
+
update
;
}
}
// namespace phi
paddle/phi/kernels/impl/adamax_kernel_impl.h
0 → 100644
浏览文件 @
f5ec0314
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/kernels/adamax_kernel.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
AdamaxKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
param
,
const
DenseTensor
&
grad
,
const
DenseTensor
&
learning_rate
,
const
DenseTensor
&
moment
,
const
DenseTensor
&
inf_norm
,
const
DenseTensor
&
beta1_pow
,
float
beta1
,
float
beta2
,
float
epsilon
,
DenseTensor
*
param_out
,
DenseTensor
*
moment_out
,
DenseTensor
*
inf_norm_out
)
{
dev_ctx
.
template
Alloc
<
T
>(
param_out
);
dev_ctx
.
template
Alloc
<
T
>(
moment_out
);
dev_ctx
.
template
Alloc
<
T
>(
inf_norm_out
);
T
beta1_
=
static_cast
<
T
>
(
beta1
);
T
beta2_
=
static_cast
<
T
>
(
beta2
);
T
epsilon_
=
static_cast
<
T
>
(
epsilon
);
auto
eigen_param
=
EigenVector
<
T
>::
Flatten
(
param
);
auto
eigen_grad
=
EigenVector
<
T
>::
Flatten
(
grad
);
auto
eigen_moment
=
EigenVector
<
T
>::
Flatten
(
moment
);
auto
eigen_inf_norm
=
EigenVector
<
T
>::
Flatten
(
inf_norm
);
auto
eigen_lr
=
EigenVector
<
T
>::
Flatten
(
learning_rate
);
auto
eigen_beta1_pow
=
EigenVector
<
T
>::
Flatten
(
beta1_pow
);
auto
eigen_param_out
=
EigenVector
<
T
>::
Flatten
(
*
param_out
);
auto
eigen_moment_out
=
EigenVector
<
T
>::
Flatten
(
*
moment_out
);
auto
eigen_inf_norm_out
=
EigenVector
<
T
>::
Flatten
(
*
inf_norm_out
);
auto
&
place
=
*
dev_ctx
.
eigen_device
();
eigen_moment_out
.
device
(
place
)
=
beta1_
*
eigen_moment
+
(
1
-
beta1_
)
*
eigen_grad
;
eigen_inf_norm_out
.
device
(
place
)
=
eigen_grad
.
abs
().
cwiseMax
((
beta2_
*
eigen_inf_norm
)
+
epsilon_
);
auto
lr_t
=
eigen_lr
/
(
1
-
eigen_beta1_pow
);
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
moment_out
->
numel
());
eigen_param_out
.
device
(
place
)
=
eigen_param
-
lr_t
.
broadcast
(
m_dsize
)
*
(
eigen_moment_out
/
eigen_inf_norm_out
);
}
}
// namespace phi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录