evaluator.py 16.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

D
dzhwinter 已提交
17
import warnings
D
Dong Zhihong 已提交
18
import numpy as np
武毅 已提交
19

20 21 22 23 24
from . import layers
from .framework import Program, Variable, program_guard
from . import unique_name
from .layer_helper import LayerHelper
from .initializer import Constant
武毅 已提交
25

26 27
__all__ = [
    'ChunkEvaluator',
28
    'EditDistance',
29
    'DetectionMAP',
30
]
Y
Yu Yang 已提交
31 32 33


def _clone_var_(block, var):
D
Dong Zhihong 已提交
34 35 36 37
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
38
        dtype=var.dtype,
D
Dong Zhihong 已提交
39 40 41 42 43
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


D
Dong Zhihong 已提交
44 45
class Evaluator(object):
    """
46 47 48 49 50 51
    Warning: better to use the fluid.metrics.* things, more
    flexible support via pure Python and Operator, and decoupled
    with executor. Short doc are intended to urge new user
    start from Metrics.

    Base Class for all evaluators.
52

Y
Yu Yang 已提交
53
    Args:
54
        name(str): The name of evaluator. such as, "accuracy". Used for generate
Y
Yu Yang 已提交
55
            temporary variable name.
56
        main_program(Program, optional): The evaluator should be added to this
Y
Yu Yang 已提交
57
            main_program. Default default_main_program()
58
        startup_program(Program, optional):The parameter should be added to this
Y
Yu Yang 已提交
59
            startup_program. Default default_startup_program()
60

Y
Yu Yang 已提交
61
    Attributes:
62
        states(list): The list of state variables. states will be reset to zero
Y
Yu Yang 已提交
63
            when `reset` is invoked.
64
        metrics(list): The list of metrics variables. They will be calculate
Y
Yu Yang 已提交
65
            every mini-batch
D
Dong Zhihong 已提交
66
    """
武毅 已提交
67

D
Dong Zhihong 已提交
68
    def __init__(self, name, **kwargs):
D
dzhwinter 已提交
69 70 71
        warnings.warn(
            "The %s is deprecated, because maintain a modified program inside evaluator cause bug easily, please use fluid.metrics.%s instead."
            % (self.__class__.__name__, self.__class__.__name__), Warning)
Y
Yu Yang 已提交
72 73 74 75 76
        self.states = []
        self.metrics = []
        self.helper = LayerHelper(name, **kwargs)

    def reset(self, executor, reset_program=None):
D
Dong Zhihong 已提交
77
        """
Y
Yu Yang 已提交
78
        reset metric states at the begin of each pass/user specified batch
79 80 81 82

        Args:
            executor(Executor|ParallelExecutor): a executor for executing the reset_program
            reset_program(Program): a single Program for reset process
D
Dong Zhihong 已提交
83
        """
Y
Yu Yang 已提交
84 85 86
        if reset_program is None:
            reset_program = Program()

87 88 89 90 91 92
        with program_guard(main_program=reset_program):
            for var in self.states:
                assert isinstance(var, Variable)
                g_var = _clone_var_(reset_program.current_block(), var)
                layers.fill_constant(
                    shape=g_var.shape, value=0.0, dtype=g_var.dtype, out=g_var)
D
Dong Zhihong 已提交
93

Y
Yu Yang 已提交
94
        executor.run(reset_program)
95

Y
Yu Yang 已提交
96
    def eval(self, executor, eval_program=None):
D
Dong Zhihong 已提交
97
        """
Y
Yu Yang 已提交
98
        Evaluate the statistics merged by multiple mini-batches.
99 100 101
        Args:
            executor(Executor|ParallelExecutor): a executor for executing the eval_program
            eval_program(Program): a single Program for eval process
D
Dong Zhihong 已提交
102 103
        """
        raise NotImplementedError()
D
Dong Zhihong 已提交
104

105
    def _create_state(self, suffix, dtype, shape):
武毅 已提交
106
        """
107 108
        Create state variable.

Y
Yu Yang 已提交
109
        Args:
110
            suffix(str): the state suffix.
111
            dtype(str|core.VarDesc.VarType): the state data type
112
            shape(tuple|list): the shape of state
Y
Yu Yang 已提交
113 114

        Returns: State variable
武毅 已提交
115

D
Dong Zhihong 已提交
116
        """
Y
Yu Yang 已提交
117
        state = self.helper.create_variable(
Y
Yu Yang 已提交
118
            name="_".join([unique_name.generate(self.helper.name), suffix]),
Y
Yu Yang 已提交
119 120 121 122 123
            persistable=True,
            dtype=dtype,
            shape=shape)
        self.states.append(state)
        return state
D
Dong Zhihong 已提交
124

D
Dong Zhihong 已提交
125

G
guosheng 已提交
126 127
class ChunkEvaluator(Evaluator):
    """
128 129 130
    Warning: This would be deprecated in the future. Please use fluid.metrics.ChunkEvaluator 
    instead.

131 132
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
G
guosheng 已提交
133
    numbers.
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): can be IOB/IOE/IOBES and IO. See the chunk_eval op for details.
        num_chunk_types (int): the number of chunk type.
        excluded_chunk_types (list): A list including chunk type ids, indicating chunk types that are not counted.

    Returns:
        tuple: tuple containing: precision, recall, f1_score

    Examples:
        .. code-block:: python

            exe = fluid.executor(place)
            evaluator = fluid.Evaluator.ChunkEvaluator(input, label)
            for epoch in PASS_NUM:
                evaluator.reset(exe)
                for data in batches:
                    loss = exe.run(fetch_list=[cost])
                distance, instance_error = distance_evaluator.eval(exe)
G
guosheng 已提交
157 158
    """

159 160 161 162 163 164 165 166
    def __init__(
            self,
            input,
            label,
            chunk_scheme,
            num_chunk_types,
            excluded_chunk_types=None, ):
        super(ChunkEvaluator, self).__init__("chunk_eval")
G
guosheng 已提交
167 168 169 170
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

171
        self.num_infer_chunks = self._create_state(
G
guosheng 已提交
172
            dtype='int64', shape=[1], suffix='num_infer_chunks')
173
        self.num_label_chunks = self._create_state(
G
guosheng 已提交
174
            dtype='int64', shape=[1], suffix='num_label_chunks')
175
        self.num_correct_chunks = self._create_state(
G
guosheng 已提交
176 177 178 179 180 181
            dtype='int64', shape=[1], suffix='num_correct_chunks')
        precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
            input=input,
            label=label,
            chunk_scheme=chunk_scheme,
            num_chunk_types=num_chunk_types,
182
            excluded_chunk_types=excluded_chunk_types, )
G
guosheng 已提交
183 184
        layers.sums(
            input=[self.num_infer_chunks, num_infer_chunks],
185
            out=self.num_infer_chunks)
G
guosheng 已提交
186 187
        layers.sums(
            input=[self.num_label_chunks, num_label_chunks],
188
            out=self.num_label_chunks)
G
guosheng 已提交
189 190
        layers.sums(
            input=[self.num_correct_chunks, num_correct_chunks],
191
            out=self.num_correct_chunks)
G
guosheng 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

        self.metrics.extend([precision, recall, f1_score])

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
            eval_program,
            fetch_list=[_clone_var_(block, state) for state in self.states])
        num_infer_chunks = num_infer_chunks[0]
        num_label_chunks = num_label_chunks[0]
        num_correct_chunks = num_correct_chunks[0]
        precision = float(
            num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0
        recall = float(
            num_correct_chunks) / num_label_chunks if num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if num_correct_chunks else 0
        return np.array(
            [precision], dtype='float32'), np.array(
                [recall], dtype='float32'), np.array(
                    [f1_score], dtype='float32')
215 216 217 218


class EditDistance(Evaluator):
    """
219 220
    Warning: This would be deprecated in the future. Please use fluid.metrics.EditDistance
    instead.
W
wanghaoshuang 已提交
221
    Accumulate edit distance sum and sequence number from mini-batches and
222
    compute the average edit_distance and instance error of all batches.
W
wanghaoshuang 已提交
223 224

    Args:
W
wanghaoshuang 已提交
225
        input: the sequences predicted by network.
W
wanghaoshuang 已提交
226 227 228 229 230
        label: the target sequences which must has same sequence count
        with input.
        ignored_tokens(list of int): Tokens that should be removed before
        calculating edit distance.

231 232
    Examples:
        .. code-block:: python
W
wanghaoshuang 已提交
233

234 235 236 237 238 239 240
            exe = fluid.executor(place)
            distance_evaluator = fluid.Evaluator.EditDistance(input, label)
            for epoch in PASS_NUM:
                distance_evaluator.reset(exe)
                for data in batches:
                    loss = exe.run(fetch_list=[cost])
                distance, instance_error = distance_evaluator.eval(exe)
W
wanghaoshuang 已提交
241 242

        In the above example:
243
        'distance' is the average of the edit distance in a pass.
244
        'instance_error' is the instance error rate in a pass.
W
wanghaoshuang 已提交
245

246 247
    """

W
wanghaoshuang 已提交
248
    def __init__(self, input, label, ignored_tokens=None, **kwargs):
249 250 251 252 253
        super(EditDistance, self).__init__("edit_distance", **kwargs)
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

254
        self.total_distance = self._create_state(
255
            dtype='float32', shape=[1], suffix='total_distance')
256
        self.seq_num = self._create_state(
W
wanghaoshuang 已提交
257
            dtype='int64', shape=[1], suffix='seq_num')
258
        self.instance_error = self._create_state(
259
            dtype='int64', shape=[1], suffix='instance_error')
260
        distances, seq_num = layers.edit_distance(
W
wanghaoshuang 已提交
261
            input=input, label=label, ignored_tokens=ignored_tokens)
262 263 264 265 266

        zero = layers.fill_constant(shape=[1], value=0.0, dtype='float32')
        compare_result = layers.equal(distances, zero)
        compare_result_int = layers.cast(x=compare_result, dtype='int')
        seq_right_count = layers.reduce_sum(compare_result_int)
267 268
        instance_error_count = layers.elementwise_sub(
            x=seq_num, y=seq_right_count)
269 270 271 272
        total_distance = layers.reduce_sum(distances)
        layers.sums(
            input=[self.total_distance, total_distance],
            out=self.total_distance)
273
        layers.sums(input=[self.seq_num, seq_num], out=self.seq_num)
274 275 276
        layers.sums(
            input=[self.instance_error, instance_error_count],
            out=self.instance_error)
277
        self.metrics.append(total_distance)
278
        self.metrics.append(instance_error_count)
279 280 281 282 283 284

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        with program_guard(main_program=eval_program):
285
            total_distance = _clone_var_(block, self.total_distance)
286
            seq_num = _clone_var_(block, self.seq_num)
287
            instance_error = _clone_var_(block, self.instance_error)
288
            seq_num = layers.cast(x=seq_num, dtype='float32')
289
            instance_error = layers.cast(x=instance_error, dtype='float32')
290
            avg_distance = layers.elementwise_div(x=total_distance, y=seq_num)
291 292 293 294
            avg_instance_error = layers.elementwise_div(
                x=instance_error, y=seq_num)
            result = executor.run(
                eval_program, fetch_list=[avg_distance, avg_instance_error])
295
        return np.array(result[0]), np.array(result[1])
296 297 298 299


class DetectionMAP(Evaluator):
    """
300 301
    Warning: This would be deprecated in the future. Please use fluid.metrics.DetectionMAP
    instead.
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    Calculate the detection mean average precision (mAP).

    The general steps are as follows:
    1. calculate the true positive and false positive according to the input
        of detection and labels.
    2. calculate mAP value, support two versions: '11 point' and 'integral'.

    Please get more information from the following articles:
      https://sanchom.wordpress.com/tag/average-precision/
      https://arxiv.org/abs/1512.02325

    Args:
        input (Variable): The detection results, which is a LoDTensor with shape
            [M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax].
        gt_label (Variable): The ground truth label index, which is a LoDTensor
317
            with shape [N, 1].
318 319
        gt_box (Variable): The ground truth bounding box (bbox), which is a
            LoDTensor with shape [N, 6]. The layout is [xmin, ymin, xmax, ymax].
320 321 322
        gt_difficult (Variable|None): Whether this ground truth is a difficult
            bounding bbox, which can be a LoDTensor [N, 1] or not set. If None,
            it means all the ground truth labels are not difficult bbox.
323 324 325 326
        class_num (int): The class number.
        background_label (int): The index of background label, the background
            label will be ignored. If set to -1, then all categories will be
            considered, 0 by defalut.
327 328 329
        overlap_threshold (float): The threshold for deciding true/false
            positive, 0.5 by defalut.
        evaluate_difficult (bool): Whether to consider difficult ground truth
330 331
            for evaluation, True by defalut. This argument does not work when
            gt_difficult is None.
332 333 334 335 336 337
        ap_version (string): The average precision calculation ways, it must be
            'integral' or '11point'. Please check
            https://sanchom.wordpress.com/tag/average-precision/ for details.
            - 11point: the 11-point interpolated average precision.
            - integral: the natural integral of the precision-recall curve.

338 339
    Examples:
        .. code-block:: python
340

341 342 343 344 345 346 347 348 349
            exe = fluid.executor(place)
            map_evaluator = fluid.Evaluator.DetectionMAP(input,
                gt_label, gt_box, gt_difficult)
            cur_map, accum_map = map_evaluator.get_map_var()
            fetch = [cost, cur_map, accum_map]
            for epoch in PASS_NUM:
                map_evaluator.reset(exe)
                for data in batches:
                    loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)
350 351 352 353 354 355 356 357 358 359 360

        In the above example:

        'cur_map_v' is the mAP of current mini-batch.
        'accum_map_v' is the accumulative mAP of one pass.
    """

    def __init__(self,
                 input,
                 gt_label,
                 gt_box,
361 362
                 gt_difficult=None,
                 class_num=None,
363
                 background_label=0,
364 365 366 367 368 369
                 overlap_threshold=0.5,
                 evaluate_difficult=True,
                 ap_version='integral'):
        super(DetectionMAP, self).__init__("map_eval")

        gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype)
370 371 372 373 374
        if gt_difficult:
            gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype)
            label = layers.concat([gt_label, gt_difficult, gt_box], axis=1)
        else:
            label = layers.concat([gt_label, gt_box], axis=1)
375 376 377 378 379

        # calculate mean average precision (mAP) of current mini-batch
        map = layers.detection_map(
            input,
            label,
380 381
            class_num,
            background_label,
382 383 384 385
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            ap_version=ap_version)

386 387 388 389
        self._create_state(dtype='int32', shape=None, suffix='accum_pos_count')
        self._create_state(dtype='float32', shape=None, suffix='accum_true_pos')
        self._create_state(
            dtype='float32', shape=None, suffix='accum_false_pos')
390 391 392 393 394 395 396 397 398 399 400 401

        self.has_state = None
        var = self.helper.create_variable(
            persistable=True, dtype='int32', shape=[1])
        self.helper.set_variable_initializer(
            var, initializer=Constant(value=int(0)))
        self.has_state = var

        # calculate accumulative mAP
        accum_map = layers.detection_map(
            input,
            label,
402 403
            class_num,
            background_label,
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            has_state=self.has_state,
            input_states=self.states,
            out_states=self.states,
            ap_version=ap_version)

        layers.fill_constant(
            shape=self.has_state.shape,
            value=1,
            dtype=self.has_state.dtype,
            out=self.has_state)

        self.cur_map = map
        self.accum_map = accum_map

    def get_map_var(self):
        return self.cur_map, self.accum_map

    def reset(self, executor, reset_program=None):
        if reset_program is None:
            reset_program = Program()
        with program_guard(main_program=reset_program):
            var = _clone_var_(reset_program.current_block(), self.has_state)
            layers.fill_constant(
                shape=var.shape, value=0, dtype=var.dtype, out=var)
        executor.run(reset_program)