evaluator.py 16.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dzhwinter 已提交
15
import warnings
D
Dong Zhihong 已提交
16
import numpy as np
武毅 已提交
17

18
import layers
Y
Yu Yang 已提交
19 20
from framework import Program, Variable, program_guard
import unique_name
21
from layer_helper import LayerHelper
22
from initializer import Constant
武毅 已提交
23

24 25
__all__ = [
    'ChunkEvaluator',
26
    'EditDistance',
27
    'DetectionMAP',
28
]
Y
Yu Yang 已提交
29 30 31


def _clone_var_(block, var):
D
Dong Zhihong 已提交
32 33 34 35
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
36
        dtype=var.dtype,
D
Dong Zhihong 已提交
37 38 39 40 41
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


D
Dong Zhihong 已提交
42 43
class Evaluator(object):
    """
44 45 46 47 48 49
    Warning: better to use the fluid.metrics.* things, more
    flexible support via pure Python and Operator, and decoupled
    with executor. Short doc are intended to urge new user
    start from Metrics.

    Base Class for all evaluators.
50

Y
Yu Yang 已提交
51
    Args:
52
        name(str): The name of evaluator. such as, "accuracy". Used for generate
Y
Yu Yang 已提交
53
            temporary variable name.
54
        main_program(Program, optional): The evaluator should be added to this
Y
Yu Yang 已提交
55
            main_program. Default default_main_program()
56
        startup_program(Program, optional):The parameter should be added to this
Y
Yu Yang 已提交
57
            startup_program. Default default_startup_program()
58

Y
Yu Yang 已提交
59
    Attributes:
60
        states(list): The list of state variables. states will be reset to zero
Y
Yu Yang 已提交
61
            when `reset` is invoked.
62
        metrics(list): The list of metrics variables. They will be calculate
Y
Yu Yang 已提交
63
            every mini-batch
D
Dong Zhihong 已提交
64
    """
武毅 已提交
65

D
Dong Zhihong 已提交
66
    def __init__(self, name, **kwargs):
D
dzhwinter 已提交
67 68 69
        warnings.warn(
            "The %s is deprecated, because maintain a modified program inside evaluator cause bug easily, please use fluid.metrics.%s instead."
            % (self.__class__.__name__, self.__class__.__name__), Warning)
Y
Yu Yang 已提交
70 71 72 73 74
        self.states = []
        self.metrics = []
        self.helper = LayerHelper(name, **kwargs)

    def reset(self, executor, reset_program=None):
D
Dong Zhihong 已提交
75
        """
Y
Yu Yang 已提交
76
        reset metric states at the begin of each pass/user specified batch
77 78 79 80

        Args:
            executor(Executor|ParallelExecutor): a executor for executing the reset_program
            reset_program(Program): a single Program for reset process
D
Dong Zhihong 已提交
81
        """
Y
Yu Yang 已提交
82 83 84
        if reset_program is None:
            reset_program = Program()

85 86 87 88 89 90
        with program_guard(main_program=reset_program):
            for var in self.states:
                assert isinstance(var, Variable)
                g_var = _clone_var_(reset_program.current_block(), var)
                layers.fill_constant(
                    shape=g_var.shape, value=0.0, dtype=g_var.dtype, out=g_var)
D
Dong Zhihong 已提交
91

Y
Yu Yang 已提交
92
        executor.run(reset_program)
93

Y
Yu Yang 已提交
94
    def eval(self, executor, eval_program=None):
D
Dong Zhihong 已提交
95
        """
Y
Yu Yang 已提交
96
        Evaluate the statistics merged by multiple mini-batches.
97 98 99
        Args:
            executor(Executor|ParallelExecutor): a executor for executing the eval_program
            eval_program(Program): a single Program for eval process
D
Dong Zhihong 已提交
100 101
        """
        raise NotImplementedError()
D
Dong Zhihong 已提交
102

103
    def _create_state(self, suffix, dtype, shape):
武毅 已提交
104
        """
105 106
        Create state variable.

Y
Yu Yang 已提交
107
        Args:
108
            suffix(str): the state suffix.
109
            dtype(str|core.VarDesc.VarType): the state data type
110
            shape(tuple|list): the shape of state
Y
Yu Yang 已提交
111 112

        Returns: State variable
武毅 已提交
113

D
Dong Zhihong 已提交
114
        """
Y
Yu Yang 已提交
115
        state = self.helper.create_variable(
Y
Yu Yang 已提交
116
            name="_".join([unique_name.generate(self.helper.name), suffix]),
Y
Yu Yang 已提交
117 118 119 120 121
            persistable=True,
            dtype=dtype,
            shape=shape)
        self.states.append(state)
        return state
D
Dong Zhihong 已提交
122

D
Dong Zhihong 已提交
123

G
guosheng 已提交
124 125
class ChunkEvaluator(Evaluator):
    """
126 127 128
    Warning: This would be deprecated in the future. Please use fluid.metrics.ChunkEvaluator 
    instead.

129 130
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
G
guosheng 已提交
131
    numbers.
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
    For some basics of chunking, please refer to
    'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.

    Args:
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): can be IOB/IOE/IOBES and IO. See the chunk_eval op for details.
        num_chunk_types (int): the number of chunk type.
        excluded_chunk_types (list): A list including chunk type ids, indicating chunk types that are not counted.

    Returns:
        tuple: tuple containing: precision, recall, f1_score

    Examples:
        .. code-block:: python

            exe = fluid.executor(place)
            evaluator = fluid.Evaluator.ChunkEvaluator(input, label)
            for epoch in PASS_NUM:
                evaluator.reset(exe)
                for data in batches:
                    loss = exe.run(fetch_list=[cost])
                distance, instance_error = distance_evaluator.eval(exe)
G
guosheng 已提交
155 156
    """

157 158 159 160 161 162 163 164
    def __init__(
            self,
            input,
            label,
            chunk_scheme,
            num_chunk_types,
            excluded_chunk_types=None, ):
        super(ChunkEvaluator, self).__init__("chunk_eval")
G
guosheng 已提交
165 166 167 168
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

169
        self.num_infer_chunks = self._create_state(
G
guosheng 已提交
170
            dtype='int64', shape=[1], suffix='num_infer_chunks')
171
        self.num_label_chunks = self._create_state(
G
guosheng 已提交
172
            dtype='int64', shape=[1], suffix='num_label_chunks')
173
        self.num_correct_chunks = self._create_state(
G
guosheng 已提交
174 175 176 177 178 179
            dtype='int64', shape=[1], suffix='num_correct_chunks')
        precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
            input=input,
            label=label,
            chunk_scheme=chunk_scheme,
            num_chunk_types=num_chunk_types,
180
            excluded_chunk_types=excluded_chunk_types, )
G
guosheng 已提交
181 182
        layers.sums(
            input=[self.num_infer_chunks, num_infer_chunks],
183
            out=self.num_infer_chunks)
G
guosheng 已提交
184 185
        layers.sums(
            input=[self.num_label_chunks, num_label_chunks],
186
            out=self.num_label_chunks)
G
guosheng 已提交
187 188
        layers.sums(
            input=[self.num_correct_chunks, num_correct_chunks],
189
            out=self.num_correct_chunks)
G
guosheng 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

        self.metrics.extend([precision, recall, f1_score])

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
            eval_program,
            fetch_list=[_clone_var_(block, state) for state in self.states])
        num_infer_chunks = num_infer_chunks[0]
        num_label_chunks = num_label_chunks[0]
        num_correct_chunks = num_correct_chunks[0]
        precision = float(
            num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0
        recall = float(
            num_correct_chunks) / num_label_chunks if num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if num_correct_chunks else 0
        return np.array(
            [precision], dtype='float32'), np.array(
                [recall], dtype='float32'), np.array(
                    [f1_score], dtype='float32')
213 214 215 216


class EditDistance(Evaluator):
    """
217 218
    Warning: This would be deprecated in the future. Please use fluid.metrics.EditDistance
    instead.
W
wanghaoshuang 已提交
219
    Accumulate edit distance sum and sequence number from mini-batches and
220
    compute the average edit_distance and instance error of all batches.
W
wanghaoshuang 已提交
221 222

    Args:
W
wanghaoshuang 已提交
223
        input: the sequences predicted by network.
W
wanghaoshuang 已提交
224 225 226 227 228
        label: the target sequences which must has same sequence count
        with input.
        ignored_tokens(list of int): Tokens that should be removed before
        calculating edit distance.

229 230
    Examples:
        .. code-block:: python
W
wanghaoshuang 已提交
231

232 233 234 235 236 237 238
            exe = fluid.executor(place)
            distance_evaluator = fluid.Evaluator.EditDistance(input, label)
            for epoch in PASS_NUM:
                distance_evaluator.reset(exe)
                for data in batches:
                    loss = exe.run(fetch_list=[cost])
                distance, instance_error = distance_evaluator.eval(exe)
W
wanghaoshuang 已提交
239 240

        In the above example:
241
        'distance' is the average of the edit distance in a pass.
242
        'instance_error' is the instance error rate in a pass.
W
wanghaoshuang 已提交
243

244 245
    """

W
wanghaoshuang 已提交
246
    def __init__(self, input, label, ignored_tokens=None, **kwargs):
247 248 249 250 251
        super(EditDistance, self).__init__("edit_distance", **kwargs)
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

252
        self.total_distance = self._create_state(
253
            dtype='float32', shape=[1], suffix='total_distance')
254
        self.seq_num = self._create_state(
W
wanghaoshuang 已提交
255
            dtype='int64', shape=[1], suffix='seq_num')
256
        self.instance_error = self._create_state(
257
            dtype='int64', shape=[1], suffix='instance_error')
258
        distances, seq_num = layers.edit_distance(
W
wanghaoshuang 已提交
259
            input=input, label=label, ignored_tokens=ignored_tokens)
260 261 262 263 264

        zero = layers.fill_constant(shape=[1], value=0.0, dtype='float32')
        compare_result = layers.equal(distances, zero)
        compare_result_int = layers.cast(x=compare_result, dtype='int')
        seq_right_count = layers.reduce_sum(compare_result_int)
265 266
        instance_error_count = layers.elementwise_sub(
            x=seq_num, y=seq_right_count)
267 268 269 270
        total_distance = layers.reduce_sum(distances)
        layers.sums(
            input=[self.total_distance, total_distance],
            out=self.total_distance)
271
        layers.sums(input=[self.seq_num, seq_num], out=self.seq_num)
272 273 274
        layers.sums(
            input=[self.instance_error, instance_error_count],
            out=self.instance_error)
275
        self.metrics.append(total_distance)
276
        self.metrics.append(instance_error_count)
277 278 279 280 281 282

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        with program_guard(main_program=eval_program):
283
            total_distance = _clone_var_(block, self.total_distance)
284
            seq_num = _clone_var_(block, self.seq_num)
285
            instance_error = _clone_var_(block, self.instance_error)
286
            seq_num = layers.cast(x=seq_num, dtype='float32')
287
            instance_error = layers.cast(x=instance_error, dtype='float32')
288
            avg_distance = layers.elementwise_div(x=total_distance, y=seq_num)
289 290 291 292
            avg_instance_error = layers.elementwise_div(
                x=instance_error, y=seq_num)
            result = executor.run(
                eval_program, fetch_list=[avg_distance, avg_instance_error])
293
        return np.array(result[0]), np.array(result[1])
294 295 296 297


class DetectionMAP(Evaluator):
    """
298 299
    Warning: This would be deprecated in the future. Please use fluid.metrics.DetectionMAP
    instead.
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
    Calculate the detection mean average precision (mAP).

    The general steps are as follows:
    1. calculate the true positive and false positive according to the input
        of detection and labels.
    2. calculate mAP value, support two versions: '11 point' and 'integral'.

    Please get more information from the following articles:
      https://sanchom.wordpress.com/tag/average-precision/
      https://arxiv.org/abs/1512.02325

    Args:
        input (Variable): The detection results, which is a LoDTensor with shape
            [M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax].
        gt_label (Variable): The ground truth label index, which is a LoDTensor
315
            with shape [N, 1].
316 317
        gt_box (Variable): The ground truth bounding box (bbox), which is a
            LoDTensor with shape [N, 6]. The layout is [xmin, ymin, xmax, ymax].
318 319 320
        gt_difficult (Variable|None): Whether this ground truth is a difficult
            bounding bbox, which can be a LoDTensor [N, 1] or not set. If None,
            it means all the ground truth labels are not difficult bbox.
321 322 323 324
        class_num (int): The class number.
        background_label (int): The index of background label, the background
            label will be ignored. If set to -1, then all categories will be
            considered, 0 by defalut.
325 326 327
        overlap_threshold (float): The threshold for deciding true/false
            positive, 0.5 by defalut.
        evaluate_difficult (bool): Whether to consider difficult ground truth
328 329
            for evaluation, True by defalut. This argument does not work when
            gt_difficult is None.
330 331 332 333 334 335
        ap_version (string): The average precision calculation ways, it must be
            'integral' or '11point'. Please check
            https://sanchom.wordpress.com/tag/average-precision/ for details.
            - 11point: the 11-point interpolated average precision.
            - integral: the natural integral of the precision-recall curve.

336 337
    Examples:
        .. code-block:: python
338

339 340 341 342 343 344 345 346 347
            exe = fluid.executor(place)
            map_evaluator = fluid.Evaluator.DetectionMAP(input,
                gt_label, gt_box, gt_difficult)
            cur_map, accum_map = map_evaluator.get_map_var()
            fetch = [cost, cur_map, accum_map]
            for epoch in PASS_NUM:
                map_evaluator.reset(exe)
                for data in batches:
                    loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)
348 349 350 351 352 353 354 355 356 357 358

        In the above example:

        'cur_map_v' is the mAP of current mini-batch.
        'accum_map_v' is the accumulative mAP of one pass.
    """

    def __init__(self,
                 input,
                 gt_label,
                 gt_box,
359 360
                 gt_difficult=None,
                 class_num=None,
361
                 background_label=0,
362 363 364 365 366 367
                 overlap_threshold=0.5,
                 evaluate_difficult=True,
                 ap_version='integral'):
        super(DetectionMAP, self).__init__("map_eval")

        gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype)
368 369 370 371 372
        if gt_difficult:
            gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype)
            label = layers.concat([gt_label, gt_difficult, gt_box], axis=1)
        else:
            label = layers.concat([gt_label, gt_box], axis=1)
373 374 375 376 377

        # calculate mean average precision (mAP) of current mini-batch
        map = layers.detection_map(
            input,
            label,
378 379
            class_num,
            background_label,
380 381 382 383
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            ap_version=ap_version)

384 385 386 387
        self._create_state(dtype='int32', shape=None, suffix='accum_pos_count')
        self._create_state(dtype='float32', shape=None, suffix='accum_true_pos')
        self._create_state(
            dtype='float32', shape=None, suffix='accum_false_pos')
388 389 390 391 392 393 394 395 396 397 398 399

        self.has_state = None
        var = self.helper.create_variable(
            persistable=True, dtype='int32', shape=[1])
        self.helper.set_variable_initializer(
            var, initializer=Constant(value=int(0)))
        self.has_state = var

        # calculate accumulative mAP
        accum_map = layers.detection_map(
            input,
            label,
400 401
            class_num,
            background_label,
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            has_state=self.has_state,
            input_states=self.states,
            out_states=self.states,
            ap_version=ap_version)

        layers.fill_constant(
            shape=self.has_state.shape,
            value=1,
            dtype=self.has_state.dtype,
            out=self.has_state)

        self.cur_map = map
        self.accum_map = accum_map

    def get_map_var(self):
        return self.cur_map, self.accum_map

    def reset(self, executor, reset_program=None):
        if reset_program is None:
            reset_program = Program()
        with program_guard(main_program=reset_program):
            var = _clone_var_(reset_program.current_block(), self.has_state)
            layers.fill_constant(
                shape=var.shape, value=0, dtype=var.dtype, out=var)
        executor.run(reset_program)