evaluator.py 14.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

D
dzhwinter 已提交
15
import warnings
D
Dong Zhihong 已提交
16
import numpy as np
武毅 已提交
17

18
import layers
Y
Yu Yang 已提交
19 20
from framework import Program, Variable, program_guard
import unique_name
21
from layer_helper import LayerHelper
22
from initializer import Constant
武毅 已提交
23

24 25
__all__ = [
    'ChunkEvaluator',
26
    'EditDistance',
27
    'DetectionMAP',
28
]
Y
Yu Yang 已提交
29 30 31


def _clone_var_(block, var):
D
Dong Zhihong 已提交
32 33 34 35
    assert isinstance(var, Variable)
    return block.create_var(
        name=var.name,
        shape=var.shape,
F
fengjiayi 已提交
36
        dtype=var.dtype,
D
Dong Zhihong 已提交
37 38 39 40 41
        type=var.type,
        lod_level=var.lod_level,
        persistable=True)


D
Dong Zhihong 已提交
42 43
class Evaluator(object):
    """
Y
Yu Yang 已提交
44
    Base Class for all evaluators
45

Y
Yu Yang 已提交
46
    Args:
47
        name(str): The name of evaluator. such as, "accuracy". Used for generate
Y
Yu Yang 已提交
48
            temporary variable name.
49
        main_program(Program, optional): The evaluator should be added to this
Y
Yu Yang 已提交
50
            main_program. Default default_main_program()
51
        startup_program(Program, optional):The parameter should be added to this
Y
Yu Yang 已提交
52
            startup_program. Default default_startup_program()
53

Y
Yu Yang 已提交
54
    Attributes:
55
        states(list): The list of state variables. states will be reset to zero
Y
Yu Yang 已提交
56
            when `reset` is invoked.
57
        metrics(list): The list of metrics variables. They will be calculate
Y
Yu Yang 已提交
58
            every mini-batch
D
Dong Zhihong 已提交
59
    """
武毅 已提交
60

D
Dong Zhihong 已提交
61
    def __init__(self, name, **kwargs):
D
dzhwinter 已提交
62 63 64
        warnings.warn(
            "The %s is deprecated, because maintain a modified program inside evaluator cause bug easily, please use fluid.metrics.%s instead."
            % (self.__class__.__name__, self.__class__.__name__), Warning)
Y
Yu Yang 已提交
65 66 67 68 69
        self.states = []
        self.metrics = []
        self.helper = LayerHelper(name, **kwargs)

    def reset(self, executor, reset_program=None):
D
Dong Zhihong 已提交
70
        """
Y
Yu Yang 已提交
71
        reset metric states at the begin of each pass/user specified batch
D
Dong Zhihong 已提交
72
        """
Y
Yu Yang 已提交
73 74 75
        if reset_program is None:
            reset_program = Program()

76 77 78 79 80 81
        with program_guard(main_program=reset_program):
            for var in self.states:
                assert isinstance(var, Variable)
                g_var = _clone_var_(reset_program.current_block(), var)
                layers.fill_constant(
                    shape=g_var.shape, value=0.0, dtype=g_var.dtype, out=g_var)
D
Dong Zhihong 已提交
82

Y
Yu Yang 已提交
83
        executor.run(reset_program)
84

Y
Yu Yang 已提交
85
    def eval(self, executor, eval_program=None):
D
Dong Zhihong 已提交
86
        """
Y
Yu Yang 已提交
87
        Evaluate the statistics merged by multiple mini-batches.
D
Dong Zhihong 已提交
88 89
        """
        raise NotImplementedError()
D
Dong Zhihong 已提交
90

Y
Yu Yang 已提交
91
    def create_state(self, suffix, dtype, shape):
武毅 已提交
92
        """
93 94
        Create state variable.

Y
Yu Yang 已提交
95
        NOTE: It is not a public API.
96

Y
Yu Yang 已提交
97
        Args:
98
            suffix(str): the state suffix.
99
            dtype(str|core.VarDesc.VarType): the state data type
100
            shape(tuple|list): the shape of state
Y
Yu Yang 已提交
101 102

        Returns: State variable
武毅 已提交
103

D
Dong Zhihong 已提交
104
        """
Y
Yu Yang 已提交
105
        state = self.helper.create_variable(
Y
Yu Yang 已提交
106
            name="_".join([unique_name.generate(self.helper.name), suffix]),
Y
Yu Yang 已提交
107 108 109 110 111
            persistable=True,
            dtype=dtype,
            shape=shape)
        self.states.append(state)
        return state
D
Dong Zhihong 已提交
112

D
Dong Zhihong 已提交
113

G
guosheng 已提交
114 115
class ChunkEvaluator(Evaluator):
    """
116 117
    Accumulate counter numbers output by chunk_eval from mini-batches and
    compute the precision recall and F1-score using the accumulated counter
G
guosheng 已提交
118 119 120
    numbers.
    """

121 122 123 124 125 126 127 128
    def __init__(
            self,
            input,
            label,
            chunk_scheme,
            num_chunk_types,
            excluded_chunk_types=None, ):
        super(ChunkEvaluator, self).__init__("chunk_eval")
G
guosheng 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

        self.num_infer_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_infer_chunks')
        self.num_label_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_label_chunks')
        self.num_correct_chunks = self.create_state(
            dtype='int64', shape=[1], suffix='num_correct_chunks')
        precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval(
            input=input,
            label=label,
            chunk_scheme=chunk_scheme,
            num_chunk_types=num_chunk_types,
144
            excluded_chunk_types=excluded_chunk_types, )
G
guosheng 已提交
145 146
        layers.sums(
            input=[self.num_infer_chunks, num_infer_chunks],
147
            out=self.num_infer_chunks)
G
guosheng 已提交
148 149
        layers.sums(
            input=[self.num_label_chunks, num_label_chunks],
150
            out=self.num_label_chunks)
G
guosheng 已提交
151 152
        layers.sums(
            input=[self.num_correct_chunks, num_correct_chunks],
153
            out=self.num_correct_chunks)
G
guosheng 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

        self.metrics.extend([precision, recall, f1_score])

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run(
            eval_program,
            fetch_list=[_clone_var_(block, state) for state in self.states])
        num_infer_chunks = num_infer_chunks[0]
        num_label_chunks = num_label_chunks[0]
        num_correct_chunks = num_correct_chunks[0]
        precision = float(
            num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0
        recall = float(
            num_correct_chunks) / num_label_chunks if num_label_chunks else 0
        f1_score = float(2 * precision * recall) / (
            precision + recall) if num_correct_chunks else 0
        return np.array(
            [precision], dtype='float32'), np.array(
                [recall], dtype='float32'), np.array(
                    [f1_score], dtype='float32')
177 178 179 180


class EditDistance(Evaluator):
    """
W
wanghaoshuang 已提交
181
    Accumulate edit distance sum and sequence number from mini-batches and
182
    compute the average edit_distance and instance error of all batches.
W
wanghaoshuang 已提交
183 184

    Args:
W
wanghaoshuang 已提交
185
        input: the sequences predicted by network.
W
wanghaoshuang 已提交
186 187 188 189 190 191 192 193 194 195 196 197
        label: the target sequences which must has same sequence count
        with input.
        ignored_tokens(list of int): Tokens that should be removed before
        calculating edit distance.

    Example:

        exe = fluid.executor(place)
        distance_evaluator = fluid.Evaluator.EditDistance(input, label)
        for epoch in PASS_NUM:
            distance_evaluator.reset(exe)
            for data in batches:
W
wanghaoshuang 已提交
198
                loss = exe.run(fetch_list=[cost])
199
            distance, instance_error = distance_evaluator.eval(exe)
W
wanghaoshuang 已提交
200 201

        In the above example:
202
        'distance' is the average of the edit distance in a pass.
203
        'instance_error' is the instance error rate in a pass.
W
wanghaoshuang 已提交
204

205 206
    """

W
wanghaoshuang 已提交
207
    def __init__(self, input, label, ignored_tokens=None, **kwargs):
208 209 210 211 212
        super(EditDistance, self).__init__("edit_distance", **kwargs)
        main_program = self.helper.main_program
        if main_program.current_block().idx != 0:
            raise ValueError("You can only invoke Evaluator in root block")

213 214
        self.total_distance = self.create_state(
            dtype='float32', shape=[1], suffix='total_distance')
215
        self.seq_num = self.create_state(
W
wanghaoshuang 已提交
216
            dtype='int64', shape=[1], suffix='seq_num')
217 218
        self.instance_error = self.create_state(
            dtype='int64', shape=[1], suffix='instance_error')
219
        distances, seq_num = layers.edit_distance(
W
wanghaoshuang 已提交
220
            input=input, label=label, ignored_tokens=ignored_tokens)
221 222 223 224 225

        zero = layers.fill_constant(shape=[1], value=0.0, dtype='float32')
        compare_result = layers.equal(distances, zero)
        compare_result_int = layers.cast(x=compare_result, dtype='int')
        seq_right_count = layers.reduce_sum(compare_result_int)
226 227
        instance_error_count = layers.elementwise_sub(
            x=seq_num, y=seq_right_count)
228 229 230 231
        total_distance = layers.reduce_sum(distances)
        layers.sums(
            input=[self.total_distance, total_distance],
            out=self.total_distance)
232
        layers.sums(input=[self.seq_num, seq_num], out=self.seq_num)
233 234 235
        layers.sums(
            input=[self.instance_error, instance_error_count],
            out=self.instance_error)
236
        self.metrics.append(total_distance)
237
        self.metrics.append(instance_error_count)
238 239 240 241 242 243

    def eval(self, executor, eval_program=None):
        if eval_program is None:
            eval_program = Program()
        block = eval_program.current_block()
        with program_guard(main_program=eval_program):
244
            total_distance = _clone_var_(block, self.total_distance)
245
            seq_num = _clone_var_(block, self.seq_num)
246
            instance_error = _clone_var_(block, self.instance_error)
247
            seq_num = layers.cast(x=seq_num, dtype='float32')
248
            instance_error = layers.cast(x=instance_error, dtype='float32')
249
            avg_distance = layers.elementwise_div(x=total_distance, y=seq_num)
250 251 252 253
            avg_instance_error = layers.elementwise_div(
                x=instance_error, y=seq_num)
            result = executor.run(
                eval_program, fetch_list=[avg_distance, avg_instance_error])
254
        return np.array(result[0]), np.array(result[1])
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274


class DetectionMAP(Evaluator):
    """
    Calculate the detection mean average precision (mAP).

    TODO (Dang Qingqing): update the following doc.
    The general steps are as follows:
    1. calculate the true positive and false positive according to the input
        of detection and labels.
    2. calculate mAP value, support two versions: '11 point' and 'integral'.

    Please get more information from the following articles:
      https://sanchom.wordpress.com/tag/average-precision/
      https://arxiv.org/abs/1512.02325

    Args:
        input (Variable): The detection results, which is a LoDTensor with shape
            [M, 6]. The layout is [label, confidence, xmin, ymin, xmax, ymax].
        gt_label (Variable): The ground truth label index, which is a LoDTensor
275
            with shape [N, 1].
276 277 278 279
        gt_difficult (Variable): Whether this ground truth is a difficult
            bounding box (bbox), which is a LoDTensor [N, 1].
        gt_box (Variable): The ground truth bounding box (bbox), which is a
            LoDTensor with shape [N, 6]. The layout is [xmin, ymin, xmax, ymax].
280 281 282 283
        class_num (int): The class number.
        background_label (int): The index of background label, the background
            label will be ignored. If set to -1, then all categories will be
            considered, 0 by defalut.
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        overlap_threshold (float): The threshold for deciding true/false
            positive, 0.5 by defalut.
        evaluate_difficult (bool): Whether to consider difficult ground truth
            for evaluation, True by defalut.
        ap_version (string): The average precision calculation ways, it must be
            'integral' or '11point'. Please check
            https://sanchom.wordpress.com/tag/average-precision/ for details.
            - 11point: the 11-point interpolated average precision.
            - integral: the natural integral of the precision-recall curve.

    Example:

        exe = fluid.executor(place)
        map_evaluator = fluid.Evaluator.DetectionMAP(input,
            gt_label, gt_difficult, gt_box)
        cur_map, accum_map = map_evaluator.get_map_var()
        fetch = [cost, cur_map, accum_map]
        for epoch in PASS_NUM:
            map_evaluator.reset(exe)
            for data in batches:
                loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)

        In the above example:

        'cur_map_v' is the mAP of current mini-batch.
        'accum_map_v' is the accumulative mAP of one pass.
    """

    def __init__(self,
                 input,
                 gt_label,
                 gt_box,
                 gt_difficult,
317 318
                 class_num,
                 background_label=0,
319 320 321 322 323 324 325 326 327 328 329 330 331
                 overlap_threshold=0.5,
                 evaluate_difficult=True,
                 ap_version='integral'):
        super(DetectionMAP, self).__init__("map_eval")

        gt_label = layers.cast(x=gt_label, dtype=gt_box.dtype)
        gt_difficult = layers.cast(x=gt_difficult, dtype=gt_box.dtype)
        label = layers.concat([gt_label, gt_difficult, gt_box], axis=1)

        # calculate mean average precision (mAP) of current mini-batch
        map = layers.detection_map(
            input,
            label,
332 333
            class_num,
            background_label,
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            ap_version=ap_version)

        self.create_state(dtype='int32', shape=None, suffix='accum_pos_count')
        self.create_state(dtype='float32', shape=None, suffix='accum_true_pos')
        self.create_state(dtype='float32', shape=None, suffix='accum_false_pos')

        self.has_state = None
        var = self.helper.create_variable(
            persistable=True, dtype='int32', shape=[1])
        self.helper.set_variable_initializer(
            var, initializer=Constant(value=int(0)))
        self.has_state = var

        # calculate accumulative mAP
        accum_map = layers.detection_map(
            input,
            label,
353 354
            class_num,
            background_label,
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
            overlap_threshold=overlap_threshold,
            evaluate_difficult=evaluate_difficult,
            has_state=self.has_state,
            input_states=self.states,
            out_states=self.states,
            ap_version=ap_version)

        layers.fill_constant(
            shape=self.has_state.shape,
            value=1,
            dtype=self.has_state.dtype,
            out=self.has_state)

        self.cur_map = map
        self.accum_map = accum_map

    def get_map_var(self):
        return self.cur_map, self.accum_map

    def reset(self, executor, reset_program=None):
        if reset_program is None:
            reset_program = Program()
        with program_guard(main_program=reset_program):
            var = _clone_var_(reset_program.current_block(), self.has_state)
            layers.fill_constant(
                shape=var.shape, value=0, dtype=var.dtype, out=var)
        executor.run(reset_program)