elementwise_op.h 21.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22

23
#include "paddle/fluid/framework/data_layout.h"
24
#include "paddle/fluid/framework/op_version_registry.h"
25
#include "paddle/fluid/operators/common_infer_shape_functions.h"
26
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
27

28 29 30
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
31 32 33 34 35 36 37 38 39

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
40 41

  void InferShape(framework::InferShapeContext *ctx) const override {
42 43 44 45 46 47 48 49 50 51 52
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ElementwiseOp");

    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Y").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the "
            "received is %s [%s].",
            ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front()));
C
chengduo 已提交
53 54

    if (ctx->GetInputsVarType("X").front() ==
55
        framework::proto::VarType::SELECTED_ROWS) {
56 57
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
58 59 60 61 62
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the size of Y should be 1. "
              "But reveived the size of Y = %s.",
              ctx->GetInputDim("Y").size()));
63 64
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
65 66 67 68 69
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the first dimension of Y should be 1. "
              "But reveived the first dimension of Y = %s.",
              ctx->GetInputDim("Y")[0]));
70 71
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
72 73 74 75
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Input X's type[%s] is not supported by elementwise_op. Please set "
          "its type to LOD_TENSOR.",
          ctx->GetInputsVarType("X").front()));
C
chengduo 已提交
76
    }
77

78 79 80 81 82 83 84 85
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
86 87 88 89 90 91 92 93
      if (x_dims.size() == y_dims.size()) {
        PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0), true,
                          platform::errors::InvalidArgument(
                              "axis should be -1 or 0 while the dimension of "
                              "tensor X (%s) is equal to the dimension of "
                              "tensor Y (%s), but received axis: %s",
                              x_dims.size(), y_dims.size(), axis));
      }
94 95 96 97 98 99 100
      PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim), true,
                        platform::errors::InvalidArgument(
                            "The axis range must be [%s, %s), but axis is %s. "
                            "Please set the axis again.",
                            -1 * max_dim, max_dim, axis));
      axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                       : axis);
101 102 103 104 105 106 107 108 109 110
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
111
  }
112 113

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
114
      const framework::ExecutionContext &ctx) const override {
115 116
    auto input_data_type =
        OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
117 118

#ifdef PADDLE_WITH_MKLDNN
119
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
120 121 122 123 124 125 126
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
127 128 129

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
130
      const framework::OpKernelType &expected_kernel_type) const override {
131 132 133 134 135 136 137 138 139
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
G
gongweibao 已提交
140 141
};

C
chengduo 已提交
142 143 144
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
145
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
C
chengduo 已提交
146
      const override {
147 148
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
149 150 151
  }
};

G
gongweibao 已提交
152 153
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
154
  void Make() final {
155 156 157 158
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
159
    AddAttr<int>("axis",
160 161 162 163
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
164
        .SetDefault(-1);
165
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
166 167
        .SetDefault(false)
        .AsExtra();
168
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
169 170
        .SetDefault("")
        .AsExtra();
171
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
172 173
        .SetDefault("")
        .AsExtra();
174 175 176 177
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
178 179
        .SetDefault(false)
        .AsExtra();
180 181 182 183
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
184 185
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
186
    /* int8 parameters */
187 188
    AddAttr<float>("Scale_x",
                   "(float, default 1.0f), The quantize scale of X tensor")
189 190
        .SetDefault(1.0f)
        .AsExtra();
191 192
    AddAttr<float>("Scale_y",
                   "(float, default 1.0f), The quantize scale of Y tensor")
193 194
        .SetDefault(1.0f)
        .AsExtra();
195 196
    AddAttr<float>("Scale_out",
                   "(float, default 1.0f), The quantize scale of output data")
197 198
        .SetDefault(1.0f)
        .AsExtra();
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
227 228 229

The equation is:

Y
Yu Yang 已提交
230
$$%s$$
K
kexinzhao 已提交
231

232
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
233
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
234 235

There are two cases for this operator:
236

L
Luo Tao 已提交
237 238
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
239 240

For case 2:
241

242 243
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
244
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
245
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
246
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
247

L
Luo Tao 已提交
248
For example:
249

G
gongweibao 已提交
250
  .. code-block:: text
G
gongweibao 已提交
251

252 253
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
254
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
255 256
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
257
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
258

Y
Yu Yang 已提交
259
)DOC",
260
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
261 262 263 264 265 266 267 268
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
269
  void InferShape(framework::InferShapeContext *ctx) const override {
270
    auto out_grad_name = framework::GradVarName("Out");
271 272 273
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "ElementwiseOpGrad");
Q
Qiao Longfei 已提交
274 275 276
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
277 278
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
279
    }
Q
Qiao Longfei 已提交
280
    if (ctx->HasOutput(y_grad_name)) {
281 282
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
283 284
    }
  }
285 286

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
287
      const framework::ExecutionContext &ctx) const override {
288 289
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
290 291

#ifdef PADDLE_WITH_MKLDNN
292
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
293 294 295 296 297 298 299
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
313 314 315 316 317 318 319 320 321 322 323 324
  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    if (Type() == "elementwise_add_grad") {
      if (ctx.InputVar("X")->IsType<framework::LoDTensor>()) {
        return framework::KernelSignature(
            "add_grad", {"X", "Y", framework::GradVarName("Out")}, {"axis"},
            {framework::GradVarName("X"), framework::GradVarName("Y")});
      }
    }

    return framework::KernelSignature("None", {"X"}, {}, {"Out"});
  }
G
gongweibao 已提交
325
};
326

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
351
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
352 353

#ifdef PADDLE_WITH_MKLDNN
354
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
355 356 357 358 359 360 361
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
C
chentianyu03 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
392 393
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
394 395
      OP_INOUT_CHECK(ctx.HasInput("DDY"), "Input", "DDY",
                     "ElementwiseOpDoubleGradWithoutDXDY");
396
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
397
    } else if (ctx.HasInput("DDY") == false) {
398 399
      OP_INOUT_CHECK(ctx.HasInput("DDX"), "Input", "DDX",
                     "ElementwiseOpDoubleGradWithoutDXDY");
400
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
401
    } else {
402 403
      input_data_type =
          OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "DDX", "DDY");
404
    }
405 406

#ifdef PADDLE_WITH_MKLDNN
407
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
408 409 410 411 412 413 414
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
415 416 417 418 419 420 421 422 423 424 425 426 427

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
428 429
};

430 431 432 433 434 435 436 437 438 439 440 441 442 443
class ElementwiseOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("D_DDX")) {
      ctx->ShareDim("DDX", "D_DDX");
      ctx->ShareLoD("DDX", "D_DDX");
    }
    if (ctx->HasOutput("D_DDY")) {
      ctx->ShareDim("DDY", "D_DDY");
      ctx->ShareLoD("DDY", "D_DDY");
    }
444 445 446 447 448 449 450 451 452 453 454 455
    if (ctx->HasOutput("D_X")) {
      ctx->ShareDim("X", "D_X");
      ctx->ShareLoD("X", "D_X");
    }
    if (ctx->HasOutput("D_Y")) {
      ctx->ShareDim("Y", "D_Y");
      ctx->ShareLoD("Y", "D_Y");
    }
    if (ctx->HasOutput("D_DOut")) {
      ctx->ShareDim("DOut", "D_DOut");
      ctx->ShareLoD("DOut", "D_DOut");
    }
456 457 458 459 460
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    framework::proto::VarType::Type input_data_type;
461
    input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "D_DDOut");
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (framework::IsComplexType(expected_kernel_type.data_type_)) {
      // only promote inputs’s types when contains complex input
      return framework::OpKernelType(tensor.type(), tensor.place(),
                                     tensor.layout());
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
  }
};

487 488 489
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
490 491
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
492
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
493 494 495
    auto &dout =
        *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    pten::funcs::ElementwiseGradPreProcess(dout, dx);
496 497 498
  }
};

499 500
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplaceInferer,
501 502
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
503 504
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplaceInferer,
                           {"DDX", "DDOut"});
D
dzhwinter 已提交
505

506 507 508
DECLARE_INPLACE_OP_INFERER(ElementwiseTripleGradOpInplaceInferer,
                           {"D_DDOut", "D_DDX"});

509 510 511
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseGradNoBufVarsInferer, "X", "Y");
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseDoubleGradNoBufVarsInferer, "Y",
                                    "DOut");
512 513
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseTripleGradNoBufVarsInferer,
                                    "DDX", "DDY");
S
sneaxiy 已提交
514

G
gongweibao 已提交
515 516
}  // namespace operators
}  // namespace paddle
H
hong 已提交
517 518 519 520 521 522 523 524
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
525
    void Apply(::paddle::framework::GradOpPtr<T> op) const override {   \
H
hong 已提交
526
      op->SetType(#kernel_type "_grad");                                \
527
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
528 529 530 531 532 533 534 535 536
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
    }                                                                   \
537 538
  }

539 540 541 542
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
543 544
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
545
                    ::paddle::operators::ElementwiseOpInplaceInferer);