elementwise_op.h 15.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <algorithm>  // for max
L
liuwei1031 已提交
18
#include <memory>
19
#include <string>
L
liuwei1031 已提交
20
#include <unordered_map>
21
#include <vector>
22
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
25
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
C
chengduo 已提交
26

27 28 29
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
30 31 32 33 34 35 36 37 38

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
39 40

  void InferShape(framework::InferShapeContext *ctx) const override {
41 42 43 44 45 46 47 48 49 50 51
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ElementwiseOp");

    PADDLE_ENFORCE_EQ(
        ctx->GetInputsVarType("Y").front(),
        framework::proto::VarType::LOD_TENSOR,
        platform::errors::InvalidArgument(
            "The input var's type should be LoDTensor, but the "
            "received is %s [%s].",
            ctx->GetInputsVarType("Y").front(), ctx->Inputs("Y").front()));
C
chengduo 已提交
52 53

    if (ctx->GetInputsVarType("X").front() ==
54
        framework::proto::VarType::SELECTED_ROWS) {
55 56
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y").size(), 1u,
57 58 59 60 61
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the size of Y should be 1. "
              "But reveived the size of Y = %s.",
              ctx->GetInputDim("Y").size()));
62 63
      PADDLE_ENFORCE_EQ(
          ctx->GetInputDim("Y")[0], 1,
64 65 66 67 68
          platform::errors::InvalidArgument(
              "For elementwise_op, if X is Sparse(VarType.SELECTED_ROWS"
              "), Y must be scalar, the first dimension of Y should be 1. "
              "But reveived the first dimension of Y = %s.",
              ctx->GetInputDim("Y")[0]));
69 70
    } else if (ctx->GetInputsVarType("X").front() !=
               framework::proto::VarType::LOD_TENSOR) {
71 72 73 74
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Input X's type[%s] is not supported by elementwise_op. Please set "
          "its type to LOD_TENSOR.",
          ctx->GetInputsVarType("X").front()));
C
chengduo 已提交
75
    }
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    if (ctx->GetInputDim("X") == ctx->GetInputDim("Y")) {
      ctx->ShareDim("X", /*->*/ "Out");
      ctx->ShareLoD("X", /*->*/ "Out");
    } else {
      auto x_dims = ctx->GetInputDim("X");
      auto y_dims = ctx->GetInputDim("Y");
      int max_dim = std::max(x_dims.size(), y_dims.size());
      int axis = ctx->Attrs().Get<int>("axis");
      axis = (axis == -1 ? std::abs(x_dims.size() - y_dims.size()) : axis);
      std::vector<int> x_dims_array(max_dim);
      std::vector<int> y_dims_array(max_dim);
      std::vector<int> out_dims_array(max_dim);
      GetBroadcastDimsArrays(x_dims, y_dims, x_dims_array.data(),
                             y_dims_array.data(), out_dims_array.data(),
                             max_dim, axis);
      ctx->SetOutputDim("Out", framework::make_ddim(out_dims_array));
      // to do
      ctx->ShareLoD("X", /*->*/ "Out");
    }
G
gongweibao 已提交
96
  }
97 98

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
99
      const framework::ExecutionContext &ctx) const override {
100
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
101 102

#ifdef PADDLE_WITH_MKLDNN
103
    auto CanMKLDNNElementwiseAddBeUsed = [&]() {
104 105 106
      int axis = ctx.Attr<int>("axis");
      int rankdiff = ctx.Input<Tensor>("X")->dims().size() -
                     ctx.Input<Tensor>("Y")->dims().size();
107
      return (rankdiff == 0) || (axis == -1) || (axis == rankdiff);
108 109 110 111
    };

    if (platform::CanMKLDNNBeUsed(ctx) &&
        (ctx.Type() != "elementwise_add" || CanMKLDNNElementwiseAddBeUsed())) {
112 113 114 115 116 117 118
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
119 120
};

C
chengduo 已提交
121 122 123
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
124
  std::unordered_map<std::string, std::string> &GetInputOutputWithSameType()
C
chengduo 已提交
125
      const override {
126 127
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
128 129 130
  }
};

G
gongweibao 已提交
131 132
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
133
  void Make() final {
134 135 136 137
    AddInputX();
    AddInputY();
    AddOpOutput();

G
gongweibao 已提交
138
    AddAttr<int>("axis",
139 140 141 142
                 "(int, default -1). If X.dimension != Y.dimension,"
                 "Y.dimension must be a subsequence of x.dimension. And axis "
                 "is the start dimension index "
                 "for broadcasting Y onto X. ")
G
gongweibao 已提交
143 144
        .SetDefault(-1)
        .EqualGreaterThan(-1);
145 146
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
147
    AddAttr<std::string>("x_data_format", "This parameter is no longer used.")
148
        .SetDefault("");
149
    AddAttr<std::string>("y_data_format", "This parameter is no longer used.")
150
        .SetDefault("");
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    AddOpComment();
  }

 protected:
  virtual void AddInputX() {
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
  }
  virtual void AddInputY() {
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
  }
  virtual void AddOpOutput() {
    AddOutput("Out",
              "N-dimension tensor. A location into which the result is stored. "
              "It's dimension "
              "equals with x");
  }
  virtual void AddOpComment() { AddComment(GetCommentExamples()); }

  virtual std::string GetOpFuntionality() const { return ""; }

  virtual std::string GetName() const = 0;
  virtual std::string GetEquation() const = 0;

  std::string GetCommentExamples() const {
    return string::Sprintf(R"DOC(
Elementwise %s Operator.

%s
K
kexinzhao 已提交
179 180 181

The equation is:

Y
Yu Yang 已提交
182
$$%s$$
K
kexinzhao 已提交
183

184
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
185
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
186 187

There are two cases for this operator:
188

L
Luo Tao 已提交
189 190
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
191 192

For case 2:
193

194 195
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
196
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
197
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
198
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
199

L
Luo Tao 已提交
200
For example:
201

G
gongweibao 已提交
202
  .. code-block:: text
G
gongweibao 已提交
203

204 205
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
206
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
207 208
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
209
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
210

Y
Yu Yang 已提交
211
)DOC",
212
                           GetName(), GetOpFuntionality(), GetEquation());
G
gongweibao 已提交
213 214 215 216 217 218 219 220
  }
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
221
  void InferShape(framework::InferShapeContext *ctx) const override {
222
    auto out_grad_name = framework::GradVarName("Out");
223 224 225
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "ElementwiseOpGrad");
    OP_INOUT_CHECK(ctx->HasInput(out_grad_name), "Input", out_grad_name,
                   "ElementwiseOpGrad");
Q
Qiao Longfei 已提交
226 227 228
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
229 230
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
231
    }
Q
Qiao Longfei 已提交
232
    if (ctx->HasOutput(y_grad_name)) {
233 234
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
235 236
    }
  }
237 238

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
239
      const framework::ExecutionContext &ctx) const override {
240 241
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
242 243

#ifdef PADDLE_WITH_MKLDNN
244 245
    // If broadcasting is needed, use native implementation
    auto CanMKLDNNElementwiseAddGradBeUsed = [&]() {
246
      return (ctx.Input<Tensor>("X")->dims() == ctx.Input<Tensor>("Y")->dims());
247 248 249 250 251
    };

    if (platform::CanMKLDNNBeUsed(ctx) &&
        (ctx.Type() != "elementwise_add_grad" ||
         CanMKLDNNElementwiseAddGradBeUsed())) {
252 253 254 255 256 257 258
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
259
};
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
class ElementwiseOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->ShareDim("X", x_grad_name);
      ctx->ShareLoD("X", x_grad_name);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->ShareDim("Y", y_grad_name);
      ctx->ShareLoD("Y", y_grad_name);
    }
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
285
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DOut");
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

class ElementwiseOpDoubleGradWithoutDXDY
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

  void InferShape(framework::InferShapeContext *ctx) const override {
    if (ctx->HasOutput("DDOut")) {
      ctx->ShareDim("DOut", "DDOut");
      ctx->ShareLoD("DOut", "DDOut");
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
313 314
    framework::proto::VarType::Type input_data_type;
    if (ctx.HasInput("DDX") == false) {
315 316
      OP_INOUT_CHECK(ctx.HasInput("DDY"), "Input", "DDY",
                     "ElementwiseOpDoubleGradWithoutDXDY");
317
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDY");
318
    } else if (ctx.HasInput("DDY") == false) {
319 320
      OP_INOUT_CHECK(ctx.HasInput("DDX"), "Input", "DDX",
                     "ElementwiseOpDoubleGradWithoutDXDY");
321
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
322
    } else {
323
      input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
324
    }
325 326 327 328 329 330 331 332 333 334 335 336

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
};

337 338 339
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
340 341
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
342 343
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
344
      auto &dout =
345 346 347 348 349 350
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

351 352 353 354
DECLARE_INPLACE_OP_INFERER(ElementwiseOpInplace, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ElementwiseGradOpInplace,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
355
DECLARE_INPLACE_OP_INFERER(ElementwiseDoubleGradOpInplace, {"DDX", "DDOut"});
D
dzhwinter 已提交
356

357 358 359 360
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseGradNoBufVarsInference, "X",
                                    "Y");
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ElementwiseDoubleGradNoBufVarsInference,
                                    "Y", "DOut");
S
sneaxiy 已提交
361

G
gongweibao 已提交
362 363
}  // namespace operators
}  // namespace paddle
H
hong 已提交
364 365 366 367 368 369 370 371
#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)              \
  template <typename T>                                                 \
  class kernel_type##GradMaker                                          \
      : public paddle::framework::SingleGradOpMaker<T> {                \
   public:                                                              \
    using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker; \
                                                                        \
   protected:                                                           \
372
    void Apply(::paddle::framework::GradOpPtr<T> op) const override {   \
H
hong 已提交
373
      op->SetType(#kernel_type "_grad");                                \
374
      op->SetInput("X", this->Input("X"));                              \
H
hong 已提交
375 376 377 378 379 380 381 382 383
      op->SetInput("Y", this->Input("Y"));                              \
      op->SetInput(::paddle::framework::GradVarName("Out"),             \
                   this->OutputGrad("Out"));                            \
      op->SetAttrMap(this->Attrs());                                    \
      op->SetOutput(::paddle::framework::GradVarName("X"),              \
                    this->InputGrad("X"));                              \
      op->SetOutput(::paddle::framework::GradVarName("Y"),              \
                    this->InputGrad("Y"));                              \
    }                                                                   \
384 385
  }

386 387 388 389
#define REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(op_type, op_name)    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    ::paddle::operators::Elementwise##op_name##OpMaker, \
                    ::paddle::operators::ElementwiseOpInferVarType,     \
H
hong 已提交
390 391
                    op_type##GradMaker<::paddle::framework::OpDesc>,    \
                    op_type##GradMaker<::paddle::imperative::OpBase>,   \
392
                    ::paddle::operators::ElementwiseOpInplace);