utils.py 28.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
import logging
import socket
import time
import os
import signal
import copy
import sys
23
import six
24 25 26
import subprocess
from contextlib import closing
import socket
27
from paddle.fluid import core
X
xiongkun 已提交
28
from paddle.distributed.fleet.launch_utils import get_backend_by_compile_flag
J
Jiangxinz 已提交
29
from distutils.util import strtobool
30

31 32 33
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.data_feeder import check_variable_and_dtype
34
from paddle import _C_ops
35

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
__all__ = [     #noqa
           'get_host_name_ip',
           'Trainer',
           'get_cluster',
           'start_local_trainers',
           'watch_local_trainers',
           'find_free_ports',
           'JobServer',
           'Cluster',
           'Pod',
           'Hdfs',
           'add_arguments',
           'terminate_local_procs',
           'TrainerProc',
           'get_logger',
51 52 53
           'pull_worker_log',
           'global_scatter',
           'global_gather',
54 55
]

56 57 58 59 60 61 62

def global_scatter(x,
                   local_count,
                   global_count,
                   group=None,
                   use_calc_stream=True):
    """
63 64 65
    The global_scatter operator distributes the data of x to n_expert * world_size experts according to local_count, 
    and then receives data according to global_count. The expert refers to a user-defined expert network, 
    n_expert refers to the number of expert networks owned by each card, and world_size refers to the number of graphics cards running the network.
66
    
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    As shown below, the value of the world size is 2, n_expert 2, the batch size of the x 4 and local_count is [2, 0, 2, 0].
    The global_count of the rank 0 is [2, 0, , ], rank 1 is [2, 0, ,](Due to the limited space, only the data calculated on rank 0 is shown here).
    In the global_scatter operator, local_count[i] represents sending local_count[i] data to the (i % n_expert)th expert of the (i // n_expert)th card,
    global_count[i] represents receiving global_count[i] data from the (i // n_expert)th card to the (i % n_expert)th expert of this card. The rank in the
    figure respresent the rank of the current card in all cards.

    The process of global_scatter sending data is as follows:

    local_count[0] represents taking out 2 batches from x and sending 2 batches to the 0th expert of the 0th card;

    local_count[1] represents taking out 0 batches from x and sending 0 batches to the 1th expert of the 0th card;

    local_count[2] represents taking out 2 batches from x and sending 2 batches to the 0th expert of the 1th card;

    local_count[3] represents taking out 0 batches from x and sending 0 batches to the 1th expert of the 1th card;

    Therefore, the global_count[0] of the 0th card is equal to 2, which means that 2 batches of data are received from the 0th card to the 0th expert;

    the global_count[1] of the 0th card is equal to 0, which means that 0 batches of data are received from the 0th card to the 1th expert;

    the global_count[0] of the 1th card is equal to 2, which means that 2 batches of data are received from the 0th card to the 0th expert;

    the global_count[1] of the 1th card is equal to 0, which means that 0 batches of data are received from the 0th card to the 1th expert.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/global_scatter_gather.png
        :width: 800
        :alt: global_scatter_gather
        :align: center

96
    Args:
97
        x (Tensor): Tensor. The tensor data type should be float16, float32, float64, int32 or int64.
98
        local_count (Tensor): Tensor which have n_expert * world_size elements that indicates
99
            how many data needed to be sent. The tensor data type should be int64.
100
        global_count (Tensor): Tensor which have n_expert * world_size elements that indicates
101
            how many data needed to be received. The tensor data type should be int64.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
    
    Returns:
        out (Tensor): The data received from all experts. 
    
    Examples:
        .. code-block:: python

            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
            init_parallel_env()
            n_expert = 2
            world_size = 2
            d_model = 2
            in_feat = d_model
            local_input_buf = np.array([[1, 2],[3, 4],[5, 6],[7, 8],[9, 10]], \
            dtype=np.float32)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                local_count = np.array([2, 1, 1, 1]) 
                global_count = np.array([2, 1, 1, 1])
            else:
                local_count = np.array([1, 1, 2, 1])
                global_count = np.array([1, 1, 2, 1])
            local_input_buf = paddle.to_tensor(local_input_buf, dtype="float32", stop_gradient=False)
            local_count = paddle.to_tensor(local_count, dtype="int64")
            global_count = paddle.to_tensor(global_count, dtype="int64")
            a = paddle.distributed.utils.global_scatter(local_input_buf, \
            local_count, global_count)
            a.stop_gradient = False
            print(a)
            # out for rank 0: [[1, 2], [3, 4], [1, 2], [5, 6], [3, 4]]
            # out for rank 1: [[7, 8], [5, 6], [7, 8], [9, 10], [9, 10]]
            # backward test
            c = a * a
            c.backward()
            print("local_input_buf.grad: ", local_input_buf.grad)
            # out for rank 0: [[2, 4], [6, 8], [10, 12], [14, 16], [18, 20]]
            # out for rank 1: [[2, 4], [6, 8], [10, 12], [14, 16], [18, 20]]
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    if in_dygraph_mode():
149
        return _C_ops.global_scatter(x, local_count, \
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
                                    global_count,  \
                                    'use_calc_stream', use_calc_stream, \
                                    'ring_id', ring_id)
    else:
        op_type = 'global_scatter'
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
            'global_scatter')
        check_variable_and_dtype(local_count, 'local_count', ['int64'],
                                 'global_scatter')
        check_variable_and_dtype(global_count, 'global_count', ['int64'],
                                 'global_scatter')

        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

        helper.append_op(
            type=op_type,
            inputs={
                'X': [x],
                'local_count': [local_count],
                'global_count': [global_count],
            },
            outputs={'Out': [out]},
            attrs={'ring_id': ring_id,
                   'use_calc_stream': use_calc_stream})
        return out


def global_gather(x,
                  local_count,
                  global_count,
                  group=None,
                  use_calc_stream=True):
    """
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
    The global_gather operator gathers the data of x into n_expert * world_size experts according to global_count, and then receives data according to local_count.
    The expert refers to a user-defined expert network, n_expert refers to the number of expert networks owned by each card, and world_size refers to the number of graphics cards running the network.

    As shown below, the value of the world size is 2, n_expert 2, the batch size of the x 4 and local_count is [2, 0, 2, 0].
    The global_count of the rank 0 is [2, 0, , ], rank 1 is [2, 0, ,](Due to the limited space, only the data calculated on rank 0 is shown here).
    In the global_gather operator, the meaning of the global_count and local_count is opposed to global_scatter, global_count[i] represents sending global_count[i] data to the (i % n_expert)th expert of the (i // n_expert)th card,
    local_count[i] represents receiving local_count[i] data from the (i // n_expert)th card to the (i % n_expert)th expert of this card. The data sent will be arranged according to the experts of each card.
    The rank in the figure respresent the rank of the current card in all cards.

    The process of global_gather sending data is as follows:

    The global_count[0] of the 0th card represents sending 2 data to the 0th expert of the 0th card;
    
    The global_count[1] of the 0th card represents sending 0 data to the 1th expert of the 0th card;
    
    The global_count[0] of the 1th card represents sending 2 data to the 0th expert of the 0th card;
    
    The global_count[1] of the 1th card represents sending 0 data to the 1th expert of the 0th card.

    .. image:: https://githubraw.cdn.bcebos.com/PaddlePaddle/docs/develop/docs/api/paddle/distributed/img/global_scatter_gather.png
        :width: 800
        :alt: global_scatter_gather
        :align: center

209 210

    Args:
211
        x (Tensor): Tensor. Tensor whose data type should be float16, float32, float64, int32 or int64.
212
        local_count (Tensor): Tensor which have n_expert * world_size elements that indicates
213
            how many data needed to be received. Tensor data type should be int64.
214
        global_count (Tensor): Tensor which have n_expert * world_size elements that indicates
215
            how many data needed to be sent. Tensor data type should be int64.
216 217 218 219
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
    
    Returns:
220
        out (Tensor): The data received from all experts. 
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    
    Examples:
        .. code-block:: python

            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
            init_parallel_env()
            n_expert = 2
            world_size = 2
            d_model = 2
            in_feat = d_model
            local_input_buf = np.array([[1, 2],[3, 4],[5, 6],[7, 8],[9, 10]],\
                                        dtype=np.float32)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                local_count = np.array([2, 1, 1, 1])
                global_count = np.array([2, 1, 1, 1])
            else:
                local_count = np.array([1, 1, 2, 1])
                global_count = np.array([1, 1, 2, 1])
            local_input_buf = paddle.to_tensor(local_input_buf, dtype="float32", stop_gradient=False)
            local_count = paddle.to_tensor(local_count, dtype="int64")
            global_count = paddle.to_tensor(global_count, dtype="int64")
            a = paddle.distributed.utils.global_gather(local_input_buf, local_count, global_count)
            print(a)
            # out for rank 0: [[1, 2], [3, 4], [7, 8], [1, 2], [7, 8]]
            # out for rank 1: [[5, 6], [9, 10], [3, 4], [5, 6], [9, 10]]
            a.stop_gradient = False
            c = a * a
            c.backward()
            print("local_input_buf.grad", local_input_buf.grad)
            # out for rank 0: [[2, 4], [6, 8], [10, 12], [14, 16], [18, 20]]
            # out for rank 1: [[2, 4], [6, 8], [10, 12], [14, 16], [18, 20]]
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    if in_dygraph_mode():
261
        return _C_ops.global_gather(x, local_count, \
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
                                    global_count, \
                                    'use_calc_stream', use_calc_stream, \
                                    'ring_id', ring_id)
    else:
        op_type = 'global_gather'
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
            'global_gather')

        check_variable_and_dtype(local_count, 'local_count', ['int64'],
                                 'global_gather')

        check_variable_and_dtype(global_count, 'global_count', ['int64'],
                                 'global_gather')
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

        helper.append_op(
            type=op_type,
            inputs={
                'X': [x],
                'local_count': [local_count],
                'global_count': [global_count]
            },
            outputs={'Out': [out]},
            attrs={
                'ring_id': group,
                'use_calc_stream': use_calc_stream,
            })
        return out


294 295 296 297
logger = logging.getLogger("root")
logger.propagate = False


298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
def get_cluster_from_args(args, selected_gpus):
    node_ips = [x.strip() for x in args.cluster_node_ips.split(',')]
    node_ip = args.node_ip
    node_rank = node_ips.index(node_ip)

    logger.debug("parsed from args:node_ips:{} node_ip:{} node_rank:{}".format(
        node_ips, node_ip, node_rank))

    free_ports = None
    if not args.use_paddlecloud and len(
            node_ips) <= 1 and args.started_port is None:
        free_ports = find_free_ports(len(selected_gpus))
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        started_port = 6070
        if args.started_port is not None:
            started_port = args.started_port

        free_ports = [
            x for x in range(started_port, started_port + len(selected_gpus))
        ]

    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
    return get_cluster(node_ips, node_ip, trainer_endpoints, selected_gpus)


def get_gpus(selected_gpus):
    if selected_gpus is None:
        from paddle.fluid import core
        gpus_num = core.get_cuda_device_count()
        gpus = [str(x) for x in range(0, gpus_num)]
    else:
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        if cuda_visible_devices is None or cuda_visible_devices == "":
            gpus = [x.strip() for x in selected_gpus.split(',')]
        else:
            # change selected_gpus into relative values
            # e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.selected_gpus=4,5,6,7;
            # therefore selected_gpus=0,1,2,3
            cuda_visible_devices_list = cuda_visible_devices.split(',')
            for x in selected_gpus.split(','):
                assert x in cuda_visible_devices_list, "Can't find "\
                "your selected_gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
                % (x, cuda_visible_devices)
            gpus = [
                cuda_visible_devices_list.index(x.strip())
                for x in selected_gpus.split(',')
            ]
            logger.info("Change selected_gpus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "CUDA_VISIBLE_DEVICES:{}".format(
                            selected_gpus, gpus, cuda_visible_devices_list))

    return gpus


def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
class Hdfs(object):
    def __init__(self):
        self.hdfs_ugi = None
        self.hdfs_name = None
        self.hdfs_path = None

    def is_valid(self):
        return self.hdfs_ugi is not None and \
            self.hdfs_name is not None and \
            self.hdfs_path is not None

    def __str__(self):
        return "hdfs_ugi:{} hdfs_name:{} hdfs_path{}".format(
            self.hdfs_ugi, self.hdfs_name, self.hdfs_path)

    def __eq__(self, n):
        return self.hdfs_ugi == n.hdfs_ugi and \
            self.hdfs_name == n.hdfs_name and \
            self.hdfs_path == n.hdfs_path

    def __ne__(self, n):
        return not self == n


class Cluster(object):
    def __init__(self, hdfs):
        self.job_server = None
        self.pods = []
        self.hdfs = None
        self.job_stage_flag = None

    def __str__(self):
        return "job_server:{} pods:{} job_stage_flag:{} hdfs:{}".format(
            self.job_server, [str(pod) for pod in self.pods],
            self.job_stage_flag, self.hdfs)

    def __eq__(self, cluster):
        if len(self.pods) != len(cluster.pods):
            return False

        for a, b in zip(self.pods, cluster.pods):
            if a != b:
                return False

        if self.job_stage_flag != cluster.job_stage_flag:
            return False

        return True

    def __ne__(self, cluster):
        return not self.__eq__(cluster)

416
    def update_pods(self, cluster):
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
        self.pods = copy.copy(cluster.pods)

    def trainers_nranks(self):
        return len(self.trainers_endpoints())

    def pods_nranks(self):
        return len(self.pods)

    def trainers_endpoints(self):
        r = []
        for pod in self.pods:
            for t in pod.trainers:
                r.append(t.endpoint)
        return r

    def pods_endpoints(self):
        r = []
        for pod in self.pods:
            ep = "{}:{}".format(pod.addr, pod.port)
            assert pod.port != None and pod.addr != None, "{} not a valid endpoint".format(
                ep)
            r.append(ep)

        return r

    def get_pod_by_id(self, pod_id):
        for pod in self.pods:
            if str(pod_id) == str(pod.id):
                return pod

        return None


class JobServer(object):
    def __init__(self):
        self.endpoint = None

    def __str__(self):
        return "{}".format(self.endpoint)

    def __eq__(self, j):
        return self.endpint == j.endpoint

    def __ne__(self, j):
        return not self == j


class Trainer(object):
    def __init__(self):
        self.gpus = []
        self.endpoint = None
        self.rank = None

    def __str__(self):
        return "gpu:{} endpoint:{} rank:{}".format(self.gpus, self.endpoint,
                                                   self.rank)

    def __eq__(self, t):
        if len(self.gpus) != len(t.gpus):
            return False

        if self.endpoint != t.endpoint or \
G
gongweibao 已提交
479
                self.rank != t.rank:
480 481 482 483 484 485 486 487 488 489 490
            return False

        for a, b in zip(self.gpus, t.gpus):
            if a != b:
                return False

        return True

    def __ne__(self, t):
        return not self == t

491
    def get_rank(self):
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        return self.rank


class Pod(object):
    def __init__(self):
        self.rank = None
        self.id = None
        self.addr = None
        self.port = None
        self.trainers = []
        self.gpus = []

    def __str__(self):
        return "rank:{} id:{} addr:{} port:{} visible_gpu:{} trainers:{}".format(
            self.rank, self.id, self.addr, self.port, self.gpus,
            [str(t) for t in self.trainers])

    def __eq__(self, pod):
        if self.rank != pod.rank or \
                self.id != pod.id or \
                self.addr != pod.addr or \
                self.port != pod.port:
Z
zhangchunle 已提交
514
            logger.debug("pod {} != {}".format(self, pod))
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
            return False

        if len(self.trainers) != len(pod.trainers):
            logger.debug("trainers {} != {}".format(self.trainers,
                                                    pod.trainers))
            return False

        for i in range(len(self.trainers)):
            if self.trainers[i] != pod.trainers[i]:
                logger.debug("trainer {} != {}".format(self.trainers[i],
                                                       pod.trainers[i]))
                return False

        return True

    def __ne__(self, pod):
        return not self == pod

    def parse_response(self, res_pods):
        pass

    def get_visible_gpus(self):
        r = ""
        for g in self.gpus:
            r += "{},".format(g)

        assert r != "", "this pod {} can't see any gpus".format(self)

        r = r[:-1]
        return r


def get_logger(log_level, name="root"):
    logger = logging.getLogger(name)
549 550 551 552 553 554 555 556 557
    # Avoid printing multiple logs
    if not logger.handlers:
        logger.setLevel(log_level)

        log_handler = logging.StreamHandler()
        log_format = logging.Formatter(
            '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
        log_handler.setFormatter(log_format)
        logger.addHandler(log_handler)
558 559 560 561

    return logger


562 563
def get_cluster(node_ips, node_ip, trainer_endpoints, selected_gpus):
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
564 565 566 567 568 569
    cluster = Cluster(hdfs=None)
    trainer_rank = 0
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
570 571 572 573 574
        cur_node_endpoints = trainer_endpoints[node_rank]
        # when use paddlecloud, endpoints may > selected_gpus(user_defined)
        assert len(cur_node_endpoints) >= len(
            selected_gpus
        ), "current trainer_endpoints size should be greater equal than selected_gpus size."
575 576 577
        for i in range(len(selected_gpus)):
            trainer = Trainer()
            trainer.gpus.append(selected_gpus[i])
578
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
579 580 581 582 583 584 585 586 587 588 589 590 591
            trainer.rank = trainer_rank
            trainer_rank += 1

            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


def terminate_local_procs(procs):
    for p in procs:
        if p.proc.poll() is None:
M
mapingshuo 已提交
592
            p.proc.terminate()
593 594
            if p.log_fn:
                p.log_fn.close()
595 596
            logger.debug("terminate process id:{}".format(p.proc.pid))

M
mapingshuo 已提交
597 598
    #wait all process terminiated
    time.sleep(3)
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    for step in range(0, 50):
        alive = False
        for p in procs:
            if p.proc.poll() is None:  # not termniate
                os.kill(p.proc.pid, signal.SIGKILL)
                alive = True

        if not alive:
            logger.info("terminate all the procs")
            return

        time.sleep(3)

    logger.fatal("can't kill all process and exit")
    exit(1)


def get_host_name_ip():
    try:
        host_name = socket.gethostname()
        host_ip = socket.gethostbyname(host_name)
        return host_name, host_ip
    except:
        return None


def add_arguments(argname, type, default, help, argparser, **kwargs):
    """Add argparse's argument.
    Usage:
    .. code-block:: python
        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
J
Jiangxinz 已提交
633
    type = strtobool if type == bool else type
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)


def find_free_ports(num):
    def __free_port():
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
            s.bind(('', 0))
            return s.getsockname()[1]

    port_set = set()
    step = 0
    while True:
        port = __free_port()
        if port not in port_set:
            port_set.add(port)

        if len(port_set) >= num:
            return port_set

        step += 1
        if step > 100:
            print(
                "can't find avilable port and use the specified static port now!"
            )
            return None

    return None


X
xiongkun 已提交
668 669 670 671
def _prepare_trainer_env(cluster, trainer, backend=None):
    if backend is None:
        backend = get_backend_by_compile_flag()  # for compatibility
    if backend == 'bkcl':
672 673 674 675 676 677 678 679
        proc_env = {
            "FLAGS_selected_xpus":
            "%s" % ",".join([str(g) for g in trainer.gpus]),
            "PADDLE_TRAINER_ID": "%d" % trainer.rank,
            "PADDLE_CURRENT_ENDPOINT": "%s" % trainer.endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
            "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints())
        }
X
xiongkun 已提交
680
    elif backend == 'nccl':
681 682 683 684 685 686 687 688
        proc_env = {
            "FLAGS_selected_gpus":
            "%s" % ",".join([str(g) for g in trainer.gpus]),
            "PADDLE_TRAINER_ID": "%d" % trainer.rank,
            "PADDLE_CURRENT_ENDPOINT": "%s" % trainer.endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
            "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints())
        }
X
xiongkun 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701
    elif backend == 'gloo':
        # NOTE (xiongkun) default fall back into cpu only
        proc_env = {
            "PADDLE_TRAINER_ID": "%d" % trainer.rank,
            "PADDLE_CURRENT_ENDPOINT": "%s" % trainer.endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
            "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints()),
            "PADDLE_DISTRI_BACKEND":
            backend,  # only add here, other will be auto
        }
    else:
        raise ValueError("backend must be one of 'gloo, nccl, bkcl'")

702 703 704
    return proc_env


705 706 707 708
class TrainerProc(object):
    def __init__(self):
        self.proc = None
        self.log_fn = None
709
        self.log_offset = None
710
        self.rank = None
711
        self.local_rank = None
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
        self.cmd = None


def start_local_trainers(cluster,
                         pod,
                         training_script,
                         training_script_args,
                         log_dir=None):
    current_env = copy.copy(os.environ.copy())
    #paddle broadcast ncclUniqueId use socket, and
    #proxy maybe make trainers unreachable, so delete them.
    #if we set them to "", grpc will log error message "bad uri"
    #so just delete them.
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

    procs = []
    for idx, t in enumerate(pod.trainers):
730
        proc_env = _prepare_trainer_env(cluster, t)
731 732 733 734 735 736 737 738 739 740 741 742
        current_env.update(proc_env)

        logger.debug("trainer proc env:{}".format(current_env))

        cmd = [sys.executable, "-u", training_script] + training_script_args

        logger.info("start trainer proc:{} env:{}".format(cmd, proc_env))

        fn = None
        if log_dir is not None:
            os.system("mkdir -p {}".format(log_dir))
            fn = open("%s/workerlog.%d" % (log_dir, idx), "a")
743
            proc = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
744 745 746 747 748 749
        else:
            proc = subprocess.Popen(cmd, env=current_env)

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = t.rank
750
        tp.local_rank = idx
751
        tp.log_fn = fn
752
        tp.log_offset = fn.tell() if fn else None
753 754 755 756 757 758 759
        tp.cmd = cmd

        procs.append(tp)

    return procs


760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
def pull_worker_log(tp):
    if tp.log_fn:
        with open(tp.log_fn.name, 'r') as fin:
            fin.seek(tp.log_offset, 0)
            for line in fin:
                try:
                    sys.stdout.write(line)
                except UnicodeEncodeError:
                    sys.stdout.write(
                        'UnicodeEncodeError occurs at this line. '
                        'Please refer to the original log file "%s"\n' %
                        tp.log_fn.name)
            tp.log_offset = fin.tell()


775 776 777 778 779 780 781
def watch_local_trainers(procs, nranks):
    try:
        error = False
        error_rank = []
        # wait all process finish or one error
        alive = False
        for p in procs:
782 783 784
            if p.log_fn and p.local_rank == 0:
                pull_worker_log(p)

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
            ret = p.proc.poll()
            if ret is None:
                alive = True
            elif ret != 0:
                error = True
                error_rank.append(p.rank)

        if error:
            terminate_local_procs(procs)
            exit(1)

    except KeyboardInterrupt:
        logger.warning("KeyboardInterrupt, exit")
        terminate_local_procs(procs)
        raise
    except SystemExit:
        logger.error(
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.".
            format(nranks, error_rank))
        terminate_local_procs(procs)
        raise
    except:
        logger.error(
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.".
            format(nranks, error_rank))
        terminate_local_procs(procs)
        raise

    return alive