utils.py 24.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
import logging
import socket
import time
import os
import signal
import copy
import sys
23
import six
24 25 26
import subprocess
from contextlib import closing
import socket
27
from paddle.fluid import core
J
Jiangxinz 已提交
28
from distutils.util import strtobool
29

30 31 32 33 34
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.data_feeder import check_variable_and_dtype


35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
__all__ = [     #noqa
           'get_host_name_ip',
           'Trainer',
           'get_cluster',
           'start_local_trainers',
           'watch_local_trainers',
           'find_free_ports',
           'JobServer',
           'Cluster',
           'Pod',
           'Hdfs',
           'add_arguments',
           'terminate_local_procs',
           'TrainerProc',
           'get_logger',
50 51 52
           'pull_worker_log',
           'global_scatter',
           'global_gather',
53 54
]

55 56 57 58 59 60 61 62 63 64 65 66 67

def global_scatter(x,
                   local_count,
                   global_count,
                   group=None,
                   use_calc_stream=True):
    """
    Scatter data in x which has been put together belong to one expert 
    to n_expert * world_size exeperts according to local_count and receive tensors 
    from n_expert * world_size experts according
    to global_count.
    
    Args:
68
        x (Tensor): Tensor. The tensor data type should be float16, float32, float64, int32 or int64.
69
        local_count (Tensor): Tensor which have n_expert * world_size elements that indicates
70
            how many data needed to be sent. The tensor data type should be int64.
71
        global_count (Tensor): Tensor which have n_expert * world_size elements that indicates
72
            how many data needed to be received. The tensor data type should be int64.
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
    
    Returns:
        out (Tensor): The data received from all experts. 
    
    Examples:
        .. code-block:: python

            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
            init_parallel_env()
            n_expert = 2
            world_size = 2
            d_model = 2
            in_feat = d_model
            local_input_buf = np.array([[1, 2],[3, 4],[5, 6],[7, 8],[9, 10]], \
            dtype=np.float32)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                local_count = np.array([2, 1, 1, 1]) 
                global_count = np.array([2, 1, 1, 1])
            else:
                local_count = np.array([1, 1, 2, 1])
                global_count = np.array([1, 1, 2, 1])
            local_input_buf = paddle.to_tensor(local_input_buf, dtype="float32", stop_gradient=False)
            local_count = paddle.to_tensor(local_count, dtype="int64")
            global_count = paddle.to_tensor(global_count, dtype="int64")
            a = paddle.distributed.utils.global_scatter(local_input_buf, \
            local_count, global_count)
            a.stop_gradient = False
            print(a)
            # out for rank 0: [[1, 2], [3, 4], [1, 2], [5, 6], [3, 4]]
            # out for rank 1: [[7, 8], [5, 6], [7, 8], [9, 10], [9, 10]]
            # backward test
            c = a * a
            c.backward()
            print("local_input_buf.grad: ", local_input_buf.grad)
            # out for rank 0: [[2, 4], [6, 8], [10, 12], [14, 16], [18, 20]]
            # out for rank 1: [[2, 4], [6, 8], [10, 12], [14, 16], [18, 20]]
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    if in_dygraph_mode():
        return core.ops.global_scatter(x, local_count, \
                                    global_count,  \
                                    'use_calc_stream', use_calc_stream, \
                                    'ring_id', ring_id)
    else:
        op_type = 'global_scatter'
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
            'global_scatter')
        check_variable_and_dtype(local_count, 'local_count', ['int64'],
                                 'global_scatter')
        check_variable_and_dtype(global_count, 'global_count', ['int64'],
                                 'global_scatter')

        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

        helper.append_op(
            type=op_type,
            inputs={
                'X': [x],
                'local_count': [local_count],
                'global_count': [global_count],
            },
            outputs={'Out': [out]},
            attrs={'ring_id': ring_id,
                   'use_calc_stream': use_calc_stream})
        return out


def global_gather(x,
                  local_count,
                  global_count,
                  group=None,
                  use_calc_stream=True):
    """
    Gather data in x to n_expert * world_size exeperts according to
    local_count and receive tensors from n_expert * world_size experts according
    to global_count.

    Args:
161
        x (Tensor): Tensor. Tensor whose data type should be float16, float32, float64, int32 or int64.
162
        local_count (Tensor): Tensor which have n_expert * world_size elements that indicates
163
            how many data needed to be received. Tensor data type should be int64.
164
        global_count (Tensor): Tensor which have n_expert * world_size elements that indicates
165
            how many data needed to be sent. Tensor data type should be int64.
166 167 168 169
        group (Group, optional): The group instance return by new_group or None for global default group. Default: None.
        use_calc_stream (bool, optional): Wether to use calculation stream (True) or communication stream. Default: True.
    
    Returns:
170
        out (Tensor): The data received from all experts. 
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    
    Examples:
        .. code-block:: python

            # required: distributed
            import numpy as np
            import paddle
            from paddle.distributed import init_parallel_env
            init_parallel_env()
            n_expert = 2
            world_size = 2
            d_model = 2
            in_feat = d_model
            local_input_buf = np.array([[1, 2],[3, 4],[5, 6],[7, 8],[9, 10]],\
                                        dtype=np.float32)
            if paddle.distributed.ParallelEnv().local_rank == 0:
                local_count = np.array([2, 1, 1, 1])
                global_count = np.array([2, 1, 1, 1])
            else:
                local_count = np.array([1, 1, 2, 1])
                global_count = np.array([1, 1, 2, 1])
            local_input_buf = paddle.to_tensor(local_input_buf, dtype="float32", stop_gradient=False)
            local_count = paddle.to_tensor(local_count, dtype="int64")
            global_count = paddle.to_tensor(global_count, dtype="int64")
            a = paddle.distributed.utils.global_gather(local_input_buf, local_count, global_count)
            print(a)
            # out for rank 0: [[1, 2], [3, 4], [7, 8], [1, 2], [7, 8]]
            # out for rank 1: [[5, 6], [9, 10], [3, 4], [5, 6], [9, 10]]
            a.stop_gradient = False
            c = a * a
            c.backward()
            print("local_input_buf.grad", local_input_buf.grad)
            # out for rank 0: [[2, 4], [6, 8], [10, 12], [14, 16], [18, 20]]
            # out for rank 1: [[2, 4], [6, 8], [10, 12], [14, 16], [18, 20]]
    """
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    if in_dygraph_mode():
        return core.ops.global_gather(x, local_count, \
                                    global_count, \
                                    'use_calc_stream', use_calc_stream, \
                                    'ring_id', ring_id)
    else:
        op_type = 'global_gather'
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'],
            'global_gather')

        check_variable_and_dtype(local_count, 'local_count', ['int64'],
                                 'global_gather')

        check_variable_and_dtype(global_count, 'global_count', ['int64'],
                                 'global_gather')
        helper = LayerHelper(op_type, **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)

        helper.append_op(
            type=op_type,
            inputs={
                'X': [x],
                'local_count': [local_count],
                'global_count': [global_count]
            },
            outputs={'Out': [out]},
            attrs={
                'ring_id': group,
                'use_calc_stream': use_calc_stream,
            })
        return out


244 245 246 247
logger = logging.getLogger("root")
logger.propagate = False


248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
def get_cluster_from_args(args, selected_gpus):
    node_ips = [x.strip() for x in args.cluster_node_ips.split(',')]
    node_ip = args.node_ip
    node_rank = node_ips.index(node_ip)

    logger.debug("parsed from args:node_ips:{} node_ip:{} node_rank:{}".format(
        node_ips, node_ip, node_rank))

    free_ports = None
    if not args.use_paddlecloud and len(
            node_ips) <= 1 and args.started_port is None:
        free_ports = find_free_ports(len(selected_gpus))
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        started_port = 6070
        if args.started_port is not None:
            started_port = args.started_port

        free_ports = [
            x for x in range(started_port, started_port + len(selected_gpus))
        ]

    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
    return get_cluster(node_ips, node_ip, trainer_endpoints, selected_gpus)


def get_gpus(selected_gpus):
    if selected_gpus is None:
        from paddle.fluid import core
        gpus_num = core.get_cuda_device_count()
        gpus = [str(x) for x in range(0, gpus_num)]
    else:
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        if cuda_visible_devices is None or cuda_visible_devices == "":
            gpus = [x.strip() for x in selected_gpus.split(',')]
        else:
            # change selected_gpus into relative values
            # e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.selected_gpus=4,5,6,7;
            # therefore selected_gpus=0,1,2,3
            cuda_visible_devices_list = cuda_visible_devices.split(',')
            for x in selected_gpus.split(','):
                assert x in cuda_visible_devices_list, "Can't find "\
                "your selected_gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
                % (x, cuda_visible_devices)
            gpus = [
                cuda_visible_devices_list.index(x.strip())
                for x in selected_gpus.split(',')
            ]
            logger.info("Change selected_gpus into reletive values. --ips:{} "
                        "will change into relative_ips:{} according to your "
                        "CUDA_VISIBLE_DEVICES:{}".format(
                            selected_gpus, gpus, cuda_visible_devices_list))

    return gpus


def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
class Hdfs(object):
    def __init__(self):
        self.hdfs_ugi = None
        self.hdfs_name = None
        self.hdfs_path = None

    def is_valid(self):
        return self.hdfs_ugi is not None and \
            self.hdfs_name is not None and \
            self.hdfs_path is not None

    def __str__(self):
        return "hdfs_ugi:{} hdfs_name:{} hdfs_path{}".format(
            self.hdfs_ugi, self.hdfs_name, self.hdfs_path)

    def __eq__(self, n):
        return self.hdfs_ugi == n.hdfs_ugi and \
            self.hdfs_name == n.hdfs_name and \
            self.hdfs_path == n.hdfs_path

    def __ne__(self, n):
        return not self == n


class Cluster(object):
    def __init__(self, hdfs):
        self.job_server = None
        self.pods = []
        self.hdfs = None
        self.job_stage_flag = None

    def __str__(self):
        return "job_server:{} pods:{} job_stage_flag:{} hdfs:{}".format(
            self.job_server, [str(pod) for pod in self.pods],
            self.job_stage_flag, self.hdfs)

    def __eq__(self, cluster):
        if len(self.pods) != len(cluster.pods):
            return False

        for a, b in zip(self.pods, cluster.pods):
            if a != b:
                return False

        if self.job_stage_flag != cluster.job_stage_flag:
            return False

        return True

    def __ne__(self, cluster):
        return not self.__eq__(cluster)

366
    def update_pods(self, cluster):
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
        self.pods = copy.copy(cluster.pods)

    def trainers_nranks(self):
        return len(self.trainers_endpoints())

    def pods_nranks(self):
        return len(self.pods)

    def trainers_endpoints(self):
        r = []
        for pod in self.pods:
            for t in pod.trainers:
                r.append(t.endpoint)
        return r

    def pods_endpoints(self):
        r = []
        for pod in self.pods:
            ep = "{}:{}".format(pod.addr, pod.port)
            assert pod.port != None and pod.addr != None, "{} not a valid endpoint".format(
                ep)
            r.append(ep)

        return r

    def get_pod_by_id(self, pod_id):
        for pod in self.pods:
            if str(pod_id) == str(pod.id):
                return pod

        return None


class JobServer(object):
    def __init__(self):
        self.endpoint = None

    def __str__(self):
        return "{}".format(self.endpoint)

    def __eq__(self, j):
        return self.endpint == j.endpoint

    def __ne__(self, j):
        return not self == j


class Trainer(object):
    def __init__(self):
        self.gpus = []
        self.endpoint = None
        self.rank = None

    def __str__(self):
        return "gpu:{} endpoint:{} rank:{}".format(self.gpus, self.endpoint,
                                                   self.rank)

    def __eq__(self, t):
        if len(self.gpus) != len(t.gpus):
            return False

        if self.endpoint != t.endpoint or \
G
gongweibao 已提交
429
                self.rank != t.rank:
430 431 432 433 434 435 436 437 438 439 440
            return False

        for a, b in zip(self.gpus, t.gpus):
            if a != b:
                return False

        return True

    def __ne__(self, t):
        return not self == t

441
    def get_rank(self):
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
        return self.rank


class Pod(object):
    def __init__(self):
        self.rank = None
        self.id = None
        self.addr = None
        self.port = None
        self.trainers = []
        self.gpus = []

    def __str__(self):
        return "rank:{} id:{} addr:{} port:{} visible_gpu:{} trainers:{}".format(
            self.rank, self.id, self.addr, self.port, self.gpus,
            [str(t) for t in self.trainers])

    def __eq__(self, pod):
        if self.rank != pod.rank or \
                self.id != pod.id or \
                self.addr != pod.addr or \
                self.port != pod.port:
Z
zhangchunle 已提交
464
            logger.debug("pod {} != {}".format(self, pod))
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
            return False

        if len(self.trainers) != len(pod.trainers):
            logger.debug("trainers {} != {}".format(self.trainers,
                                                    pod.trainers))
            return False

        for i in range(len(self.trainers)):
            if self.trainers[i] != pod.trainers[i]:
                logger.debug("trainer {} != {}".format(self.trainers[i],
                                                       pod.trainers[i]))
                return False

        return True

    def __ne__(self, pod):
        return not self == pod

    def parse_response(self, res_pods):
        pass

    def get_visible_gpus(self):
        r = ""
        for g in self.gpus:
            r += "{},".format(g)

        assert r != "", "this pod {} can't see any gpus".format(self)

        r = r[:-1]
        return r


def get_logger(log_level, name="root"):
    logger = logging.getLogger(name)
    logger.setLevel(log_level)

    log_handler = logging.StreamHandler()
    log_format = logging.Formatter(
        '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
    log_handler.setFormatter(log_format)
    logger.addHandler(log_handler)

    return logger


510 511
def get_cluster(node_ips, node_ip, trainer_endpoints, selected_gpus):
    assert type(trainer_endpoints) is list, "trainer_endpoints must be list"
512 513 514 515 516 517
    cluster = Cluster(hdfs=None)
    trainer_rank = 0
    for node_rank, ip in enumerate(node_ips):
        pod = Pod()
        pod.rank = node_rank
        pod.addr = ip
518 519 520 521 522
        cur_node_endpoints = trainer_endpoints[node_rank]
        # when use paddlecloud, endpoints may > selected_gpus(user_defined)
        assert len(cur_node_endpoints) >= len(
            selected_gpus
        ), "current trainer_endpoints size should be greater equal than selected_gpus size."
523 524 525
        for i in range(len(selected_gpus)):
            trainer = Trainer()
            trainer.gpus.append(selected_gpus[i])
526
            trainer.endpoint = "%s" % (cur_node_endpoints[i])
527 528 529 530 531 532 533 534 535 536 537 538 539
            trainer.rank = trainer_rank
            trainer_rank += 1

            pod.trainers.append(trainer)
        cluster.pods.append(pod)

    pod_rank = node_ips.index(node_ip)
    return cluster, cluster.pods[pod_rank]


def terminate_local_procs(procs):
    for p in procs:
        if p.proc.poll() is None:
M
mapingshuo 已提交
540
            p.proc.terminate()
541 542
            if p.log_fn:
                p.log_fn.close()
543 544
            logger.debug("terminate process id:{}".format(p.proc.pid))

M
mapingshuo 已提交
545 546
    #wait all process terminiated
    time.sleep(3)
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
    for step in range(0, 50):
        alive = False
        for p in procs:
            if p.proc.poll() is None:  # not termniate
                os.kill(p.proc.pid, signal.SIGKILL)
                alive = True

        if not alive:
            logger.info("terminate all the procs")
            return

        time.sleep(3)

    logger.fatal("can't kill all process and exit")
    exit(1)


def get_host_name_ip():
    try:
        host_name = socket.gethostname()
        host_ip = socket.gethostbyname(host_name)
        return host_name, host_ip
    except:
        return None


def add_arguments(argname, type, default, help, argparser, **kwargs):
    """Add argparse's argument.
    Usage:
    .. code-block:: python
        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
J
Jiangxinz 已提交
581
    type = strtobool if type == bool else type
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)


def find_free_ports(num):
    def __free_port():
        with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s:
            s.bind(('', 0))
            return s.getsockname()[1]

    port_set = set()
    step = 0
    while True:
        port = __free_port()
        if port not in port_set:
            port_set.add(port)

        if len(port_set) >= num:
            return port_set

        step += 1
        if step > 100:
            print(
                "can't find avilable port and use the specified static port now!"
            )
            return None

    return None


616
def _prepare_trainer_env(cluster, trainer):
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
    if core.is_compiled_with_xpu():
        proc_env = {
            "FLAGS_selected_xpus":
            "%s" % ",".join([str(g) for g in trainer.gpus]),
            "PADDLE_TRAINER_ID": "%d" % trainer.rank,
            "PADDLE_CURRENT_ENDPOINT": "%s" % trainer.endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
            "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints())
        }
    elif core.is_compiled_with_cuda():
        proc_env = {
            "FLAGS_selected_gpus":
            "%s" % ",".join([str(g) for g in trainer.gpus]),
            "PADDLE_TRAINER_ID": "%d" % trainer.rank,
            "PADDLE_CURRENT_ENDPOINT": "%s" % trainer.endpoint,
            "PADDLE_TRAINERS_NUM": "%d" % cluster.trainers_nranks(),
            "PADDLE_TRAINER_ENDPOINTS": ",".join(cluster.trainers_endpoints())
        }
635 636 637
    return proc_env


638 639 640 641
class TrainerProc(object):
    def __init__(self):
        self.proc = None
        self.log_fn = None
642
        self.log_offset = None
643
        self.rank = None
644
        self.local_rank = None
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
        self.cmd = None


def start_local_trainers(cluster,
                         pod,
                         training_script,
                         training_script_args,
                         log_dir=None):
    current_env = copy.copy(os.environ.copy())
    #paddle broadcast ncclUniqueId use socket, and
    #proxy maybe make trainers unreachable, so delete them.
    #if we set them to "", grpc will log error message "bad uri"
    #so just delete them.
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)

    procs = []
    for idx, t in enumerate(pod.trainers):
663
        proc_env = _prepare_trainer_env(cluster, t)
664 665 666 667 668 669 670 671 672 673 674 675
        current_env.update(proc_env)

        logger.debug("trainer proc env:{}".format(current_env))

        cmd = [sys.executable, "-u", training_script] + training_script_args

        logger.info("start trainer proc:{} env:{}".format(cmd, proc_env))

        fn = None
        if log_dir is not None:
            os.system("mkdir -p {}".format(log_dir))
            fn = open("%s/workerlog.%d" % (log_dir, idx), "a")
676
            proc = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
677 678 679 680 681 682
        else:
            proc = subprocess.Popen(cmd, env=current_env)

        tp = TrainerProc()
        tp.proc = proc
        tp.rank = t.rank
683
        tp.local_rank = idx
684
        tp.log_fn = fn
685
        tp.log_offset = fn.tell() if fn else None
686 687 688 689 690 691 692
        tp.cmd = cmd

        procs.append(tp)

    return procs


693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
def pull_worker_log(tp):
    if tp.log_fn:
        with open(tp.log_fn.name, 'r') as fin:
            fin.seek(tp.log_offset, 0)
            for line in fin:
                try:
                    sys.stdout.write(line)
                except UnicodeEncodeError:
                    sys.stdout.write(
                        'UnicodeEncodeError occurs at this line. '
                        'Please refer to the original log file "%s"\n' %
                        tp.log_fn.name)
            tp.log_offset = fin.tell()


708 709 710 711 712 713 714
def watch_local_trainers(procs, nranks):
    try:
        error = False
        error_rank = []
        # wait all process finish or one error
        alive = False
        for p in procs:
715 716 717
            if p.log_fn and p.local_rank == 0:
                pull_worker_log(p)

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
            ret = p.proc.poll()
            if ret is None:
                alive = True
            elif ret != 0:
                error = True
                error_rank.append(p.rank)

        if error:
            terminate_local_procs(procs)
            exit(1)

    except KeyboardInterrupt:
        logger.warning("KeyboardInterrupt, exit")
        terminate_local_procs(procs)
        raise
    except SystemExit:
        logger.error(
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.".
            format(nranks, error_rank))
        terminate_local_procs(procs)
        raise
    except:
        logger.error(
            "ABORT!!! Out of all {} trainers, the trainer process with rank={} was aborted. Please check its log.".
            format(nranks, error_rank))
        terminate_local_procs(procs)
        raise

    return alive