send_recv.py 18.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle.fluid.layer_helper import LayerHelper
17
from paddle.fluid.framework import _in_legacy_dygraph, in_dygraph_mode
18
from paddle.fluid.framework import Variable
19 20 21 22 23
from paddle.fluid.data_feeder import (
    check_dtype,
    check_type,
    check_variable_and_dtype,
)
24
from paddle import _C_ops, _legacy_C_ops
25

26 27 28 29 30
from .utils import (
    convert_out_size_to_list,
    get_out_size_tensor_inputs,
    reshape_lhs_rhs,
)
31

32 33
__all__ = []

34

35 36 37
def send_u_recv(
    x, src_index, dst_index, reduce_op="sum", out_size=None, name=None
):
38 39 40 41
    """

    Graph Learning message passing api.

42
    This api is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory
43
    consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index`
44
    to gather the corresponding data, and then use `dst_index` to update the corresponding position of output tensor
45
    in different reduce ops, like sum, mean, max, or min. Besides, we can use `out_size` to set necessary output shape.
46 47 48 49 50

    .. code-block:: text

           Given:

51
           x = [[0, 2, 3],
52 53 54 55 56 57 58
                [1, 4, 5],
                [2, 6, 7]]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

59
           reduce_op = "sum"
60 61 62 63 64

           out_size = None

           Then:

65
           out = [[0, 2, 3],
66 67 68 69 70
                  [2, 8, 10],
                  [1, 4, 5]]

    Args:
        x (Tensor): The input tensor, and the available data type is float32, float64, int32, int64.
71
                    And we support float16 in gpu version.
72
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
73 74
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`.
                            The available data type is int32, int64.
75
        reduce_op (str): Different reduce ops, including `sum`, `mean`, `max`, `min`.
76
                         Default value is `sum`.
77
        out_size (int|Tensor|None): We can set `out_size` to get necessary output shape. If not set or
78
                                    out_size is smaller or equal to 0, then this input will not be used.
79
                                    Otherwise, `out_size` should be equal with or larger than
80 81 82 83 84
                                    max(dst_index) + 1.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
85 86
        out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`.
                      If `out_size` is set correctly, then it should have the same shape as `x` except
87 88 89 90 91 92 93 94 95
                      the 0th dimension.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
96
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
97
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, reduce_op="sum")
98 99 100 101
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [1., 4., 5.]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
102
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
103
            out_size = paddle.max(dst_index) + 1
104
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, reduce_op="sum", out_size=out_size)
105 106 107 108
            # Outputs: [[0., 2., 3.], [[2., 8., 10.]]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
109
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
110
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, reduce_op="sum")
111 112 113 114
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [0., 0., 0.]]

    """

115
    if reduce_op not in ["sum", "mean", "max", "min"]:
116
        raise ValueError(
117
            "reduce_op should be `sum`, `mean`, `max` or `min`, but received %s"
118 119
            % reduce_op
        )
120 121 122 123 124

    # TODO(daisiming): Should we add judgement for out_size: max(dst_index) + 1.

    if _in_legacy_dygraph():
        out_size = convert_out_size_to_list(out_size)
125 126 127 128 129 130 131 132 133 134
        out, tmp = _legacy_C_ops.graph_send_recv(
            x,
            src_index,
            dst_index,
            None,
            'reduce_op',
            reduce_op.upper(),
            'out_size',
            out_size,
        )
135 136 137
        return out
    if in_dygraph_mode():
        out_size = convert_out_size_to_list(out_size)
138 139 140
        return _C_ops.graph_send_recv(
            x, src_index, dst_index, reduce_op.upper(), out_size
        )
141

142
    check_variable_and_dtype(
143 144 145 146 147 148 149 150 151 152 153
        x,
        "X",
        ("float32", "float64", "int32", "int64", "float16"),
        "graph_send_recv",
    )
    check_variable_and_dtype(
        src_index, "Src_index", ("int32", "int64"), "graph_send_recv"
    )
    check_variable_and_dtype(
        dst_index, "Dst_index", ("int32", "int64"), "graph_send_recv"
    )
154
    if out_size:
155 156 157 158 159 160
        check_type(
            out_size,
            'out_size',
            (int, np.int32, np.int64, Variable),
            'graph_send_recv',
        )
161
    if isinstance(out_size, Variable):
162 163 164
        check_dtype(
            out_size.dtype, 'out_size', ['int32', 'int64'], 'graph_send_recv'
        )
165 166 167

    helper = LayerHelper("send_u_recv", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
168 169 170
    dst_count = helper.create_variable_for_type_inference(
        dtype="int32", stop_gradient=True
    )
171 172

    inputs = {"X": x, "Src_index": src_index, "Dst_index": dst_index}
173
    attrs = {"reduce_op": reduce_op.upper()}
174 175 176 177 178 179 180 181 182 183
    get_out_size_tensor_inputs(
        inputs=inputs, attrs=attrs, out_size=out_size, op_type='graph_send_recv'
    )

    helper.append_op(
        type="graph_send_recv",
        inputs=inputs,
        outputs={"Out": out, "Dst_count": dst_count},
        attrs=attrs,
    )
184
    return out
185 186


187 188 189 190 191 192 193 194 195 196
def send_ue_recv(
    x,
    y,
    src_index,
    dst_index,
    message_op="add",
    reduce_op="sum",
    out_size=None,
    name=None,
):
197 198 199 200
    """

    Graph Learning message passing api.

201
    This api is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory
202
    consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index`
203 204
    to gather the corresponding data, after computing with `y` in different message ops like add/sub/mul/div, then use `dst_index` to
    update the corresponding position of output tensor in different reduce ops, like sum, mean, max, or min.
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    Besides, we can use `out_size` to set necessary output shape.

    .. code-block:: text

           Given:

           x = [[0, 2, 3],
                [1, 4, 5],
                [2, 6, 7]]

           y = [1, 1, 1]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

           message_op = "add"

           reduce_op = "sum"

           out_size = None

           Then:

           out = [[1, 3, 4],
                  [4, 10, 12],
                  [2, 5, 6]]
    Args:
        x (Tensor): The input node feature tensor, and the available data type is float32, float64, int32, int64.
                    And we support float16 in gpu version.
        y (Tensor): The input edge feature tensor, and the available data type is float32, float64, int32, int64.
                    And we support float16 in gpu version.
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
238
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`.
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
                            The available data type is int32, int64.
        message_op (str): Different message ops for x and e, including `add`, `sub`, `mul`, `div`.
        reduce_op (str): Different reduce ops, including `sum`, `mean`, `max`, `min`.
                         Default value is `sum`.
        out_size (int|Tensor|None): We can set `out_size` to get necessary output shape. If not set or
                                    out_size is smaller or equal to 0, then this input will not be used.
                                    Otherwise, `out_size` should be equal with or larger than
                                    max(dst_index) + 1.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`.
                      If `out_size` is set correctly, then it should have the same shape as `x` except
                      the 0th dimension.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            y = paddle.to_tensor([1, 1, 1, 1], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
263
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
264 265 266 267 268 269
            out = paddle.geometric.send_ue_recv(x, y, src_index, dst_index, message_op="add", reduce_op="sum")
            # Outputs: [[1., 3., 4.], [4., 10., 12.], [2., 5., 6.]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            y = paddle.to_tensor([1, 1, 1], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
270
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
271 272 273 274 275 276 277
            out_size = paddle.max(dst_index) + 1
            out = paddle.geometric.send_ue_recv(x, y, src_index, dst_index, message_op="add", reduce_op="sum", out_size=out_size)
            # Outputs: [[1., 3., 4.], [[4., 10., 12.]]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            y = paddle.to_tensor([1, 1, 1], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
278
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
279 280 281 282 283 284 285
            out = paddle.geometric.send_ue_recv(x, y, src_index, dst_index, message_op="add", reduce_op="sum")
            # Outputs: [[1., 3., 4.], [4., 10., 12.], [0., 0., 0.]]

    """

    if message_op not in ["add", "sub", "mul", "div"]:
        raise ValueError(
286 287 288
            "message_op should be `add`, `sub`, `mul`, `div`, but received %s"
            % message_op
        )
289 290 291 292

    if reduce_op not in ["sum", "mean", "max", "min"]:
        raise ValueError(
            "reduce_op should be `sum`, `mean`, `max` or `min`, but received %s"
293 294
            % reduce_op
        )
295 296 297 298 299 300 301 302

    x, y = reshape_lhs_rhs(x, y)

    if message_op == 'sub':
        message_op = 'add'
        y = -y
    if message_op == "div":
        message_op = 'mul'
303
        y = 1.0 / (y + 1e-12)
304 305 306 307 308

    # TODO(daisiming): Should we add judgement for out_size: max(dst_index) + 1.

    if _in_legacy_dygraph():
        out_size = convert_out_size_to_list(out_size)
309 310 311 312 313 314 315 316 317 318 319 320 321
        out, tmp = _legacy_C_ops.graph_send_ue_recv(
            x,
            y,
            src_index,
            dst_index,
            None,
            'message_op',
            message_op.upper(),
            'reduce_op',
            reduce_op.upper(),
            'out_size',
            out_size,
        )
322 323 324
        return out
    if in_dygraph_mode():
        out_size = convert_out_size_to_list(out_size)
325 326 327 328 329 330 331 332 333
        return _C_ops.graph_send_ue_recv(
            x,
            y,
            src_index,
            dst_index,
            message_op.upper(),
            reduce_op.upper(),
            out_size,
        )
334 335

    check_variable_and_dtype(
336 337 338 339 340 341 342 343 344 345 346
        x,
        "X",
        ("float32", "float64", "int32", "int64", "float16"),
        "graph_send_ue_recv",
    )
    check_variable_and_dtype(
        y,
        "Y",
        ("float32", "float64", "int32", "int64", "float16"),
        "graph_send_ue_recv",
    )
347
    check_variable_and_dtype(
348 349 350 351 352
        src_index, "Src_index", ("int32", "int64"), "graph_send_ue_recv"
    )
    check_variable_and_dtype(
        dst_index, "Dst_index", ("int32", "int64"), "graph_send_ue_recv"
    )
353
    if out_size:
354 355 356 357 358 359
        check_type(
            out_size,
            'out_size',
            (int, np.int32, np.int64, Variable),
            'graph_send_ue_recv',
        )
360
    if isinstance(out_size, Variable):
361 362 363
        check_dtype(
            out_size.dtype, 'out_size', ['int32', 'int64'], 'graph_send_ue_recv'
        )
364 365 366

    helper = LayerHelper("send_ue_recv", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
367 368 369
    dst_count = helper.create_variable_for_type_inference(
        dtype="int32", stop_gradient=True
    )
370 371 372

    inputs = {"X": x, "Y": y, "Src_index": src_index, "Dst_index": dst_index}
    attrs = {"message_op": message_op.upper(), "reduce_op": reduce_op.upper()}
373 374 375 376 377 378 379 380 381 382 383 384 385
    get_out_size_tensor_inputs(
        inputs=inputs,
        attrs=attrs,
        out_size=out_size,
        op_type='graph_send_ue_recv',
    )

    helper.append_op(
        type="graph_send_ue_recv",
        inputs=inputs,
        outputs={"Out": out, "Dst_count": dst_count},
        attrs=attrs,
    )
386
    return out
387 388 389 390 391 392 393


def send_uv(x, y, src_index, dst_index, message_op="add", name=None):
    """

    Graph Learning message passing api.

394 395
    This api is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory
    consumption in the process of message passing. Take `x` as the source node feature tensor, take `y` as
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    the destination node feature tensor. Then we use `src_index` and `dst_index` to gather the corresponding data,
    and then compute the edge features in different message_ops like `add`, `sub`, `mul`, `div`.

    .. code-block:: text

           Given:

           x = [[0, 2, 3],
                [1, 4, 5],
                [2, 6, 7]]

           y = [[0, 1, 2],
                [2, 3, 4],
                [4, 5, 6]]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

           message_op = "add"

           Then:

           out = [[2, 5, 7],
                  [5, 9, 11],
                  [4, 9, 11],
                  [0, 3, 5]]

    Args:
        x (Tensor): The source node feature tensor, and the available data type is float32, float64, int32, int64. And we support float16 in gpu version.
        y (Tensor): The destination node feature tensor, and the available data type is float32, float64, int32, int64. And we support float16 in gpu version.
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
428 429
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`.
                            The available data type is int32, int64.
430
        message_op (str): Different message ops for x and y, including `add`, `sub`, `mul` and `div`.
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The output tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            y = paddle.to_tensor([[0, 1, 2], [2, 3, 4], [4, 5, 6]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.geometric.send_uv(x, y, src_index, dst_index, message_op="add")
            # Outputs: [[2., 5., 7.], [5., 9., 11.], [4., 9., 11.], [0., 3., 5.]]

    """

    if message_op not in ['add', 'sub', 'mul', 'div']:
        raise ValueError(
454 455 456
            "message_op should be `add`, `sub`, `mul`, `div`, but received %s"
            % message_op
        )
457 458 459 460 461 462 463 464

    x, y = reshape_lhs_rhs(x, y)

    if message_op == 'sub':
        message_op = 'add'
        y = -y
    if message_op == 'div':
        message_op = 'mul'
465
        y = 1.0 / (y + 1e-12)
466 467

    if in_dygraph_mode():
468 469 470
        return _C_ops.graph_send_uv(
            x, y, src_index, dst_index, message_op.upper()
        )
471 472
    else:
        if _in_legacy_dygraph():
473 474 475
            return _legacy_C_ops.graph_send_uv(
                x, y, src_index, dst_index, "message_op", message_op.upper()
            )
476 477 478
        else:
            helper = LayerHelper("send_uv", **locals())
            check_variable_and_dtype(
479 480 481 482 483 484 485 486 487 488 489 490 491 492
                x,
                'x',
                ['int32', 'int64', 'float32', 'float64', 'float16'],
                'graph_send_uv',
            )
            check_variable_and_dtype(
                y,
                'y',
                ['int32', 'int64', 'float32', 'float64', 'float16'],
                'graph_send_uv',
            )
            check_variable_and_dtype(
                src_index, 'src_index', ['int32', 'int64'], 'graph_send_uv'
            )
493
            check_variable_and_dtype(
494 495
                dst_index, 'dst_index', ['int32', 'int64'], 'graph_send_uv'
            )
496 497 498 499 500 501
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

            inputs = {
                'x': x,
                'y': y,
                'src_index': src_index,
502
                'dst_index': dst_index,
503 504
            }
            attrs = {'message_op': message_op.upper()}
505 506 507 508 509 510
            helper.append_op(
                type="graph_send_uv",
                inputs=inputs,
                attrs=attrs,
                outputs={"out": out},
            )
511
            return out