send_recv.py 14.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode, _in_legacy_dygraph, in_dygraph_mode
from paddle.fluid.framework import Variable
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from paddle import _C_ops

22
from .utils import convert_out_size_to_list, get_out_size_tensor_inputs, reshape_lhs_rhs
23 24 25 26 27


def send_u_recv(x,
                src_index,
                dst_index,
28
                reduce_op="sum",
29 30 31 32 33 34 35 36 37
                out_size=None,
                name=None):
    """

    Graph Learning message passing api.

    This api is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory 
    consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index`
    to gather the corresponding data, and then use `dst_index` to update the corresponding position of output tensor 
38
    in different reduce ops, like sum, mean, max, or min. Besides, we can use `out_size` to set necessary output shape.
39 40 41 42 43

    .. code-block:: text

           Given:

44
           x = [[0, 2, 3],
45 46 47 48 49 50 51
                [1, 4, 5],
                [2, 6, 7]]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

52
           reduce_op = "sum"
53 54 55 56 57

           out_size = None

           Then:

58
           out = [[0, 2, 3],
59 60 61 62 63
                  [2, 8, 10],
                  [1, 4, 5]]

    Args:
        x (Tensor): The input tensor, and the available data type is float32, float64, int32, int64.
64
                    And we support float16 in gpu version.
65 66 67
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`. 
                            The available data type is int32, int64. 
68
        reduce_op (str): Different reduce ops, including `sum`, `mean`, `max`, `min`.
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
                         Default value is `sum`.
        out_size (int|Tensor|None): We can set `out_size` to get necessary output shape. If not set or 
                                    out_size is smaller or equal to 0, then this input will not be used.
                                    Otherwise, `out_size` should be equal with or larger than 
                                    max(dst_index) + 1.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`. 
                      If `out_size` is set correctly, then it should have the same shape as `x` except 
                      the 0th dimension.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
92
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, reduce_op="sum")
93 94 95 96 97 98 99
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [1., 4., 5.]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out_size = paddle.max(dst_index) + 1
100
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, reduce_op="sum", out_size=out_size)
101 102 103 104 105 106
            # Outputs: [[0., 2., 3.], [[2., 8., 10.]]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
107
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, reduce_op="sum")
108 109 110 111
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [0., 0., 0.]]

    """

112
    if reduce_op not in ["sum", "mean", "max", "min"]:
113
        raise ValueError(
114 115
            "reduce_op should be `sum`, `mean`, `max` or `min`, but received %s"
            % reduce_op)
116 117 118 119 120 121

    # TODO(daisiming): Should we add judgement for out_size: max(dst_index) + 1.

    if _in_legacy_dygraph():
        out_size = convert_out_size_to_list(out_size)
        out, tmp = _C_ops.graph_send_recv(x, src_index,
122 123
                                          dst_index, None, 'reduce_op',
                                          reduce_op.upper(), 'out_size',
124 125 126 127 128
                                          out_size)
        return out
    if in_dygraph_mode():
        out_size = convert_out_size_to_list(out_size)
        return _C_ops.final_state_graph_send_recv(x, src_index, dst_index,
129
                                                  reduce_op.upper(), out_size)
130

131 132 133
    check_variable_and_dtype(
        x, "X", ("float32", "float64", "int32", "int64", "float16"),
        "graph_send_recv")
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    check_variable_and_dtype(src_index, "Src_index", ("int32", "int64"),
                             "graph_send_recv")
    check_variable_and_dtype(dst_index, "Dst_index", ("int32", "int64"),
                             "graph_send_recv")
    if out_size:
        check_type(out_size, 'out_size', (int, np.int32, np.int64, Variable),
                   'graph_send_recv')
    if isinstance(out_size, Variable):
        check_dtype(out_size.dtype, 'out_size', ['int32', 'int64'],
                    'graph_send_recv')

    helper = LayerHelper("send_u_recv", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    dst_count = helper.create_variable_for_type_inference(dtype="int32",
                                                          stop_gradient=True)

    inputs = {"X": x, "Src_index": src_index, "Dst_index": dst_index}
151
    attrs = {"reduce_op": reduce_op.upper()}
152 153 154 155 156 157 158 159 160 161 162 163 164
    get_out_size_tensor_inputs(inputs=inputs,
                               attrs=attrs,
                               out_size=out_size,
                               op_type='graph_send_recv')

    helper.append_op(type="graph_send_recv",
                     inputs=inputs,
                     outputs={
                         "Out": out,
                         "Dst_count": dst_count
                     },
                     attrs=attrs)
    return out
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338


def send_ue_recv(x,
                 y,
                 src_index,
                 dst_index,
                 message_op="add",
                 reduce_op="sum",
                 out_size=None,
                 name=None):
    """

    Graph Learning message passing api.

    This api is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory 
    consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index`
    to gather the corresponding data, after computing with `y` in different message ops like add/sub/mul/div, then use `dst_index` to 
    update the corresponding position of output tensor in different reduce ops, like sum, mean, max, or min. 
    Besides, we can use `out_size` to set necessary output shape.

    .. code-block:: text

           Given:

           x = [[0, 2, 3],
                [1, 4, 5],
                [2, 6, 7]]

           y = [1, 1, 1]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

           message_op = "add"

           reduce_op = "sum"

           out_size = None

           Then:

           out = [[1, 3, 4],
                  [4, 10, 12],
                  [2, 5, 6]]
    Args:
        x (Tensor): The input node feature tensor, and the available data type is float32, float64, int32, int64.
                    And we support float16 in gpu version.
        y (Tensor): The input edge feature tensor, and the available data type is float32, float64, int32, int64.
                    And we support float16 in gpu version.
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`. 
                            The available data type is int32, int64.
        message_op (str): Different message ops for x and e, including `add`, `sub`, `mul`, `div`.
        reduce_op (str): Different reduce ops, including `sum`, `mean`, `max`, `min`.
                         Default value is `sum`.
        out_size (int|Tensor|None): We can set `out_size` to get necessary output shape. If not set or
                                    out_size is smaller or equal to 0, then this input will not be used.
                                    Otherwise, `out_size` should be equal with or larger than
                                    max(dst_index) + 1.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`.
                      If `out_size` is set correctly, then it should have the same shape as `x` except
                      the 0th dimension.

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            y = paddle.to_tensor([1, 1, 1, 1], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.geometric.send_ue_recv(x, y, src_index, dst_index, message_op="add", reduce_op="sum")
            # Outputs: [[1., 3., 4.], [4., 10., 12.], [2., 5., 6.]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            y = paddle.to_tensor([1, 1, 1], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out_size = paddle.max(dst_index) + 1
            out = paddle.geometric.send_ue_recv(x, y, src_index, dst_index, message_op="add", reduce_op="sum", out_size=out_size)
            # Outputs: [[1., 3., 4.], [[4., 10., 12.]]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            y = paddle.to_tensor([1, 1, 1], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.geometric.send_ue_recv(x, y, src_index, dst_index, message_op="add", reduce_op="sum")
            # Outputs: [[1., 3., 4.], [4., 10., 12.], [0., 0., 0.]]

    """

    if message_op not in ["add", "sub", "mul", "div"]:
        raise ValueError(
            "message_op should be `add`, `sub`, `mul`, `div`, but received %s" %
            message_op)

    if reduce_op not in ["sum", "mean", "max", "min"]:
        raise ValueError(
            "reduce_op should be `sum`, `mean`, `max` or `min`, but received %s"
            % reduce_op)

    x, y = reshape_lhs_rhs(x, y)

    if message_op == 'sub':
        message_op = 'add'
        y = -y
    if message_op == "div":
        message_op = 'mul'
        y = 1. / y

    # TODO(daisiming): Should we add judgement for out_size: max(dst_index) + 1.

    if _in_legacy_dygraph():
        out_size = convert_out_size_to_list(out_size)
        out, tmp = _C_ops.graph_send_ue_recv(x, y, src_index, dst_index,
                                             None, 'message_op',
                                             message_op.upper(), 'reduce_op',
                                             reduce_op.upper(), 'out_size',
                                             out_size)
        return out
    if in_dygraph_mode():
        out_size = convert_out_size_to_list(out_size)
        return _C_ops.final_state_graph_send_ue_recv(x, y, src_index, dst_index,
                                                     message_op.upper(),
                                                     reduce_op.upper(),
                                                     out_size)

    check_variable_and_dtype(
        x, "X", ("float32", "float64", "int32", "int64", "float16"),
        "graph_send_ue_recv")
    check_variable_and_dtype(
        y, "Y", ("float32", "float64", "int32", "int64", "float16"),
        "graph_send_ue_recv")
    check_variable_and_dtype(src_index, "Src_index", ("int32", "int64"),
                             "graph_send_ue_recv")
    check_variable_and_dtype(dst_index, "Dst_index", ("int32", "int64"),
                             "graph_send_ue_recv")
    if out_size:
        check_type(out_size, 'out_size', (int, np.int32, np.int64, Variable),
                   'graph_send_ue_recv')
    if isinstance(out_size, Variable):
        check_dtype(out_size.dtype, 'out_size', ['int32', 'int64'],
                    'graph_send_ue_recv')

    helper = LayerHelper("send_ue_recv", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    dst_count = helper.create_variable_for_type_inference(dtype="int32",
                                                          stop_gradient=True)

    inputs = {"X": x, "Y": y, "Src_index": src_index, "Dst_index": dst_index}
    attrs = {"message_op": message_op.upper(), "reduce_op": reduce_op.upper()}
    get_out_size_tensor_inputs(inputs=inputs,
                               attrs=attrs,
                               out_size=out_size,
                               op_type='graph_send_ue_recv')

    helper.append_op(type="graph_send_ue_recv",
                     inputs=inputs,
                     outputs={
                         "Out": out,
                         "Dst_count": dst_count
                     },
                     attrs=attrs)
    return out