send_recv.py 18.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.framework import _non_static_mode, _in_legacy_dygraph, in_dygraph_mode
from paddle.fluid.framework import Variable
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
20
from paddle import _C_ops, _legacy_C_ops
21

22
from .utils import convert_out_size_to_list, get_out_size_tensor_inputs, reshape_lhs_rhs
23

24 25
__all__ = []

26 27 28 29

def send_u_recv(x,
                src_index,
                dst_index,
30
                reduce_op="sum",
31 32 33 34 35 36
                out_size=None,
                name=None):
    """

    Graph Learning message passing api.

37
    This api is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory
38
    consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index`
39
    to gather the corresponding data, and then use `dst_index` to update the corresponding position of output tensor
40
    in different reduce ops, like sum, mean, max, or min. Besides, we can use `out_size` to set necessary output shape.
41 42 43 44 45

    .. code-block:: text

           Given:

46
           x = [[0, 2, 3],
47 48 49 50 51 52 53
                [1, 4, 5],
                [2, 6, 7]]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

54
           reduce_op = "sum"
55 56 57 58 59

           out_size = None

           Then:

60
           out = [[0, 2, 3],
61 62 63 64 65
                  [2, 8, 10],
                  [1, 4, 5]]

    Args:
        x (Tensor): The input tensor, and the available data type is float32, float64, int32, int64.
66
                    And we support float16 in gpu version.
67
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
68 69
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`.
                            The available data type is int32, int64.
70
        reduce_op (str): Different reduce ops, including `sum`, `mean`, `max`, `min`.
71
                         Default value is `sum`.
72
        out_size (int|Tensor|None): We can set `out_size` to get necessary output shape. If not set or
73
                                    out_size is smaller or equal to 0, then this input will not be used.
74
                                    Otherwise, `out_size` should be equal with or larger than
75 76 77 78 79
                                    max(dst_index) + 1.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
80 81
        out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`.
                      If `out_size` is set correctly, then it should have the same shape as `x` except
82 83 84 85 86 87 88 89 90
                      the 0th dimension.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
91
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
92
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, reduce_op="sum")
93 94 95 96
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [1., 4., 5.]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
97
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
98
            out_size = paddle.max(dst_index) + 1
99
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, reduce_op="sum", out_size=out_size)
100 101 102 103
            # Outputs: [[0., 2., 3.], [[2., 8., 10.]]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
104
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
105
            out = paddle.geometric.send_u_recv(x, src_index, dst_index, reduce_op="sum")
106 107 108 109
            # Outputs: [[0., 2., 3.], [2., 8., 10.], [0., 0., 0.]]

    """

110
    if reduce_op not in ["sum", "mean", "max", "min"]:
111
        raise ValueError(
112 113
            "reduce_op should be `sum`, `mean`, `max` or `min`, but received %s"
            % reduce_op)
114 115 116 117 118

    # TODO(daisiming): Should we add judgement for out_size: max(dst_index) + 1.

    if _in_legacy_dygraph():
        out_size = convert_out_size_to_list(out_size)
119 120 121 122
        out, tmp = _legacy_C_ops.graph_send_recv(x, src_index, dst_index,
                                                 None, 'reduce_op',
                                                 reduce_op.upper(), 'out_size',
                                                 out_size)
123 124 125
        return out
    if in_dygraph_mode():
        out_size = convert_out_size_to_list(out_size)
126 127
        return _C_ops.graph_send_recv(x, src_index, dst_index,
                                      reduce_op.upper(), out_size)
128

129 130 131
    check_variable_and_dtype(
        x, "X", ("float32", "float64", "int32", "int64", "float16"),
        "graph_send_recv")
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    check_variable_and_dtype(src_index, "Src_index", ("int32", "int64"),
                             "graph_send_recv")
    check_variable_and_dtype(dst_index, "Dst_index", ("int32", "int64"),
                             "graph_send_recv")
    if out_size:
        check_type(out_size, 'out_size', (int, np.int32, np.int64, Variable),
                   'graph_send_recv')
    if isinstance(out_size, Variable):
        check_dtype(out_size.dtype, 'out_size', ['int32', 'int64'],
                    'graph_send_recv')

    helper = LayerHelper("send_u_recv", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    dst_count = helper.create_variable_for_type_inference(dtype="int32",
                                                          stop_gradient=True)

    inputs = {"X": x, "Src_index": src_index, "Dst_index": dst_index}
149
    attrs = {"reduce_op": reduce_op.upper()}
150 151 152 153 154 155 156 157 158 159 160 161 162
    get_out_size_tensor_inputs(inputs=inputs,
                               attrs=attrs,
                               out_size=out_size,
                               op_type='graph_send_recv')

    helper.append_op(type="graph_send_recv",
                     inputs=inputs,
                     outputs={
                         "Out": out,
                         "Dst_count": dst_count
                     },
                     attrs=attrs)
    return out
163 164 165 166 167 168 169 170 171 172 173 174 175 176


def send_ue_recv(x,
                 y,
                 src_index,
                 dst_index,
                 message_op="add",
                 reduce_op="sum",
                 out_size=None,
                 name=None):
    """

    Graph Learning message passing api.

177
    This api is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory
178
    consumption in the process of message passing. Take `x` as the input tensor, we first use `src_index`
179 180
    to gather the corresponding data, after computing with `y` in different message ops like add/sub/mul/div, then use `dst_index` to
    update the corresponding position of output tensor in different reduce ops, like sum, mean, max, or min.
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    Besides, we can use `out_size` to set necessary output shape.

    .. code-block:: text

           Given:

           x = [[0, 2, 3],
                [1, 4, 5],
                [2, 6, 7]]

           y = [1, 1, 1]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

           message_op = "add"

           reduce_op = "sum"

           out_size = None

           Then:

           out = [[1, 3, 4],
                  [4, 10, 12],
                  [2, 5, 6]]
    Args:
        x (Tensor): The input node feature tensor, and the available data type is float32, float64, int32, int64.
                    And we support float16 in gpu version.
        y (Tensor): The input edge feature tensor, and the available data type is float32, float64, int32, int64.
                    And we support float16 in gpu version.
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
214
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`.
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
                            The available data type is int32, int64.
        message_op (str): Different message ops for x and e, including `add`, `sub`, `mul`, `div`.
        reduce_op (str): Different reduce ops, including `sum`, `mean`, `max`, `min`.
                         Default value is `sum`.
        out_size (int|Tensor|None): We can set `out_size` to get necessary output shape. If not set or
                                    out_size is smaller or equal to 0, then this input will not be used.
                                    Otherwise, `out_size` should be equal with or larger than
                                    max(dst_index) + 1.
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The output tensor, should have the same shape and same dtype as input tensor `x`.
                      If `out_size` is set correctly, then it should have the same shape as `x` except
                      the 0th dimension.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            y = paddle.to_tensor([1, 1, 1, 1], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
239
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
240 241 242 243 244 245
            out = paddle.geometric.send_ue_recv(x, y, src_index, dst_index, message_op="add", reduce_op="sum")
            # Outputs: [[1., 3., 4.], [4., 10., 12.], [2., 5., 6.]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            y = paddle.to_tensor([1, 1, 1], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
246
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
247 248 249 250 251 252 253
            out_size = paddle.max(dst_index) + 1
            out = paddle.geometric.send_ue_recv(x, y, src_index, dst_index, message_op="add", reduce_op="sum", out_size=out_size)
            # Outputs: [[1., 3., 4.], [[4., 10., 12.]]]

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            y = paddle.to_tensor([1, 1, 1], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [2, 1], [0, 0]], dtype="int32")
254
            src_index, dst_index = indexes[:, 0], indexes[:, 1]
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
            out = paddle.geometric.send_ue_recv(x, y, src_index, dst_index, message_op="add", reduce_op="sum")
            # Outputs: [[1., 3., 4.], [4., 10., 12.], [0., 0., 0.]]

    """

    if message_op not in ["add", "sub", "mul", "div"]:
        raise ValueError(
            "message_op should be `add`, `sub`, `mul`, `div`, but received %s" %
            message_op)

    if reduce_op not in ["sum", "mean", "max", "min"]:
        raise ValueError(
            "reduce_op should be `sum`, `mean`, `max` or `min`, but received %s"
            % reduce_op)

    x, y = reshape_lhs_rhs(x, y)

    if message_op == 'sub':
        message_op = 'add'
        y = -y
    if message_op == "div":
        message_op = 'mul'
277
        y = 1. / (y + 1e-12)
278 279 280 281 282

    # TODO(daisiming): Should we add judgement for out_size: max(dst_index) + 1.

    if _in_legacy_dygraph():
        out_size = convert_out_size_to_list(out_size)
283 284 285 286 287 288
        out, tmp = _legacy_C_ops.graph_send_ue_recv(x, y, src_index, dst_index,
                                                    None, 'message_op',
                                                    message_op.upper(),
                                                    'reduce_op',
                                                    reduce_op.upper(),
                                                    'out_size', out_size)
289 290 291
        return out
    if in_dygraph_mode():
        out_size = convert_out_size_to_list(out_size)
292 293 294
        return _C_ops.graph_send_ue_recv(x, y, src_index, dst_index,
                                         message_op.upper(), reduce_op.upper(),
                                         out_size)
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332

    check_variable_and_dtype(
        x, "X", ("float32", "float64", "int32", "int64", "float16"),
        "graph_send_ue_recv")
    check_variable_and_dtype(
        y, "Y", ("float32", "float64", "int32", "int64", "float16"),
        "graph_send_ue_recv")
    check_variable_and_dtype(src_index, "Src_index", ("int32", "int64"),
                             "graph_send_ue_recv")
    check_variable_and_dtype(dst_index, "Dst_index", ("int32", "int64"),
                             "graph_send_ue_recv")
    if out_size:
        check_type(out_size, 'out_size', (int, np.int32, np.int64, Variable),
                   'graph_send_ue_recv')
    if isinstance(out_size, Variable):
        check_dtype(out_size.dtype, 'out_size', ['int32', 'int64'],
                    'graph_send_ue_recv')

    helper = LayerHelper("send_ue_recv", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    dst_count = helper.create_variable_for_type_inference(dtype="int32",
                                                          stop_gradient=True)

    inputs = {"X": x, "Y": y, "Src_index": src_index, "Dst_index": dst_index}
    attrs = {"message_op": message_op.upper(), "reduce_op": reduce_op.upper()}
    get_out_size_tensor_inputs(inputs=inputs,
                               attrs=attrs,
                               out_size=out_size,
                               op_type='graph_send_ue_recv')

    helper.append_op(type="graph_send_ue_recv",
                     inputs=inputs,
                     outputs={
                         "Out": out,
                         "Dst_count": dst_count
                     },
                     attrs=attrs)
    return out
333 334 335 336 337 338 339


def send_uv(x, y, src_index, dst_index, message_op="add", name=None):
    """

    Graph Learning message passing api.

340 341
    This api is mainly used in Graph Learning domain, and the main purpose is to reduce intermediate memory
    consumption in the process of message passing. Take `x` as the source node feature tensor, take `y` as
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    the destination node feature tensor. Then we use `src_index` and `dst_index` to gather the corresponding data,
    and then compute the edge features in different message_ops like `add`, `sub`, `mul`, `div`.

    .. code-block:: text

           Given:

           x = [[0, 2, 3],
                [1, 4, 5],
                [2, 6, 7]]

           y = [[0, 1, 2],
                [2, 3, 4],
                [4, 5, 6]]

           src_index = [0, 1, 2, 0]

           dst_index = [1, 2, 1, 0]

           message_op = "add"

           Then:

           out = [[2, 5, 7],
                  [5, 9, 11],
                  [4, 9, 11],
                  [0, 3, 5]]

    Args:
        x (Tensor): The source node feature tensor, and the available data type is float32, float64, int32, int64. And we support float16 in gpu version.
        y (Tensor): The destination node feature tensor, and the available data type is float32, float64, int32, int64. And we support float16 in gpu version.
        src_index (Tensor): An 1-D tensor, and the available data type is int32, int64.
374 375
        dst_index (Tensor): An 1-D tensor, and should have the same shape as `src_index`.
                            The available data type is int32, int64.
376
        message_op (str): Different message ops for x and y, including `add`, `sub`, `mul` and `div`.
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
        name (str, optional): Name for the operation (optional, default is None).
                              For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The output tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[0, 2, 3], [1, 4, 5], [2, 6, 7]], dtype="float32")
            y = paddle.to_tensor([[0, 1, 2], [2, 3, 4], [4, 5, 6]], dtype="float32")
            indexes = paddle.to_tensor([[0, 1], [1, 2], [2, 1], [0, 0]], dtype="int32")
            src_index = indexes[:, 0]
            dst_index = indexes[:, 1]
            out = paddle.geometric.send_uv(x, y, src_index, dst_index, message_op="add")
            # Outputs: [[2., 5., 7.], [5., 9., 11.], [4., 9., 11.], [0., 3., 5.]]

    """

    if message_op not in ['add', 'sub', 'mul', 'div']:
        raise ValueError(
            "message_op should be `add`, `sub`, `mul`, `div`, but received %s" %
            message_op)

    x, y = reshape_lhs_rhs(x, y)

    if message_op == 'sub':
        message_op = 'add'
        y = -y
    if message_op == 'div':
        message_op = 'mul'
410
        y = 1. / (y + 1e-12)
411 412

    if in_dygraph_mode():
413 414
        return _C_ops.graph_send_uv(x, y, src_index, dst_index,
                                    message_op.upper())
415 416
    else:
        if _in_legacy_dygraph():
417 418
            return _legacy_C_ops.graph_send_uv(x, y, src_index, dst_index,
                                               "message_op", message_op.upper())
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
        else:
            helper = LayerHelper("send_uv", **locals())
            check_variable_and_dtype(
                x, 'x', ['int32', 'int64', 'float32', 'float64', 'float16'],
                'graph_send_uv')
            check_variable_and_dtype(
                y, 'y', ['int32', 'int64', 'float32', 'float64', 'float16'],
                'graph_send_uv')
            check_variable_and_dtype(src_index, 'src_index', ['int32', 'int64'],
                                     'graph_send_uv')
            check_variable_and_dtype(dst_index, 'dst_index', ['int32', 'int64'],
                                     'graph_send_uv')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

            inputs = {
                'x': x,
                'y': y,
                'src_index': src_index,
                'dst_index': dst_index
            }
            attrs = {'message_op': message_op.upper()}
            helper.append_op(type="graph_send_uv",
                             inputs=inputs,
                             attrs=attrs,
                             outputs={"out": out})
            return out