test_imperative_gan.py 9.3 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

import paddle
import paddle.fluid as fluid
M
minqiyang 已提交
20
import paddle.fluid.core as core
X
Xin Pan 已提交
21
from paddle.fluid.optimizer import SGDOptimizer
22
from paddle.fluid import Linear
X
Xin Pan 已提交
23
from test_imperative_base import new_program_scope
L
lujun 已提交
24
from paddle.fluid.dygraph.base import to_variable
25
from paddle.fluid.framework import _test_eager_guard
X
Xin Pan 已提交
26 27


28
class Discriminator(fluid.Layer):
29 30 31 32
    def __init__(self):
        super(Discriminator, self).__init__()
        self._fc1 = Linear(1, 32, act='elu')
        self._fc2 = Linear(32, 1)
X
Xin Pan 已提交
33 34 35

    def forward(self, inputs):
        x = self._fc1(inputs)
36 37
        x = self._fc2(x)
        return x
X
Xin Pan 已提交
38 39


40
class Generator(fluid.Layer):
41 42 43 44 45
    def __init__(self):
        super(Generator, self).__init__()
        self._fc1 = Linear(2, 64, act='elu')
        self._fc2 = Linear(64, 64, act='elu')
        self._fc3 = Linear(64, 1)
X
Xin Pan 已提交
46 47 48 49

    def forward(self, inputs):
        x = self._fc1(inputs)
        x = self._fc2(x)
50 51
        x = self._fc3(x)
        return x
X
Xin Pan 已提交
52 53


L
lujun 已提交
54
class TestDygraphGAN(unittest.TestCase):
55
    def func_test_gan_float32(self):
X
Xin Pan 已提交
56
        seed = 90
C
cnn 已提交
57
        paddle.seed(1)
L
Leo Chen 已提交
58
        paddle.framework.random._manual_program_seed(1)
X
Xin Pan 已提交
59 60
        startup = fluid.Program()
        discriminate_p = fluid.Program()
X
Xin Pan 已提交
61 62
        generate_p = fluid.Program()

X
Xin Pan 已提交
63
        scope = fluid.core.Scope()
64 65 66
        with new_program_scope(
            main=discriminate_p, startup=startup, scope=scope
        ):
67 68
            discriminator = Discriminator()
            generator = Generator()
X
Xin Pan 已提交
69

70 71 72 73 74 75
            img = fluid.layers.data(
                name="img", shape=[2, 1], append_batch_size=False
            )
            noise = fluid.layers.data(
                name="noise", shape=[2, 2], append_batch_size=False
            )
X
Xin Pan 已提交
76 77 78 79

            d_real = discriminator(img)
            d_loss_real = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
80
                    x=d_real,
81 82 83 84 85
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=1.0
                    ),
                )
            )
X
Xin Pan 已提交
86 87 88 89

            d_fake = discriminator(generator(noise))
            d_loss_fake = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
90
                    x=d_fake,
91 92 93 94 95
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=0.0
                    ),
                )
            )
X
Xin Pan 已提交
96 97 98 99 100 101 102

            d_loss = d_loss_real + d_loss_fake

            sgd = SGDOptimizer(learning_rate=1e-3)
            sgd.minimize(d_loss)

        with new_program_scope(main=generate_p, startup=startup, scope=scope):
103 104
            discriminator = Discriminator()
            generator = Generator()
X
Xin Pan 已提交
105

106 107 108
            noise = fluid.layers.data(
                name="noise", shape=[2, 2], append_batch_size=False
            )
X
Xin Pan 已提交
109 110 111 112

            d_fake = discriminator(generator(noise))
            g_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
113
                    x=d_fake,
114 115 116 117 118
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=1.0
                    ),
                )
            )
X
Xin Pan 已提交
119 120 121 122

            sgd = SGDOptimizer(learning_rate=1e-3)
            sgd.minimize(g_loss)

123 124 125 126 127
        exe = fluid.Executor(
            fluid.CPUPlace()
            if not core.is_compiled_with_cuda()
            else fluid.CUDAPlace(0)
        )
X
Xin Pan 已提交
128
        static_params = dict()
X
Xin Pan 已提交
129 130 131 132
        with fluid.scope_guard(scope):
            img = np.ones([2, 1], np.float32)
            noise = np.ones([2, 2], np.float32)
            exe.run(startup)
133 134 135 136 137 138 139 140
            static_d_loss = exe.run(
                discriminate_p,
                feed={'img': img, 'noise': noise},
                fetch_list=[d_loss],
            )[0]
            static_g_loss = exe.run(
                generate_p, feed={'noise': noise}, fetch_list=[g_loss]
            )[0]
X
Xin Pan 已提交
141 142

            # generate_p contains all parameters needed.
X
Xin Pan 已提交
143
            for param in generate_p.global_block().all_parameters():
X
Xin Pan 已提交
144
                static_params[param.name] = np.array(
145 146
                    scope.find_var(param.name).get_tensor()
                )
X
Xin Pan 已提交
147 148

        dy_params = dict()
L
lujun 已提交
149
        with fluid.dygraph.guard():
C
cnn 已提交
150
            paddle.seed(1)
L
Leo Chen 已提交
151
            paddle.framework.random._manual_program_seed(1)
X
Xin Pan 已提交
152

153 154
            discriminator = Discriminator()
            generator = Generator()
155 156 157 158 159 160
            sgd = SGDOptimizer(
                learning_rate=1e-3,
                parameter_list=(
                    discriminator.parameters() + generator.parameters()
                ),
            )
X
Xin Pan 已提交
161 162 163 164

            d_real = discriminator(to_variable(np.ones([2, 1], np.float32)))
            d_loss_real = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
165 166 167
                    x=d_real, label=to_variable(np.ones([2, 1], np.float32))
                )
            )
X
Xin Pan 已提交
168 169

            d_fake = discriminator(
170 171
                generator(to_variable(np.ones([2, 2], np.float32)))
            )
X
Xin Pan 已提交
172 173
            d_loss_fake = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
174 175 176
                    x=d_fake, label=to_variable(np.zeros([2, 1], np.float32))
                )
            )
X
Xin Pan 已提交
177 178

            d_loss = d_loss_real + d_loss_fake
L
lujun 已提交
179
            d_loss.backward()
X
Xin Pan 已提交
180
            sgd.minimize(d_loss)
X
Xin Pan 已提交
181 182
            discriminator.clear_gradients()
            generator.clear_gradients()
X
Xin Pan 已提交
183

X
Xin Pan 已提交
184
            d_fake = discriminator(
185 186
                generator(to_variable(np.ones([2, 2], np.float32)))
            )
X
Xin Pan 已提交
187 188
            g_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
189 190 191
                    x=d_fake, label=to_variable(np.ones([2, 1], np.float32))
                )
            )
L
lujun 已提交
192
            g_loss.backward()
X
Xin Pan 已提交
193 194
            sgd.minimize(g_loss)
            for p in discriminator.parameters():
195
                dy_params[p.name] = p.numpy()
X
Xin Pan 已提交
196
            for p in generator.parameters():
197
                dy_params[p.name] = p.numpy()
X
Xin Pan 已提交
198

199 200
            dy_g_loss = g_loss.numpy()
            dy_d_loss = d_loss.numpy()
X
Xin Pan 已提交
201

202 203
        dy_params2 = dict()
        with fluid.dygraph.guard():
204
            fluid.set_flags({'FLAGS_sort_sum_gradient': True})
C
cnn 已提交
205
            paddle.seed(1)
L
Leo Chen 已提交
206
            paddle.framework.random._manual_program_seed(1)
207 208
            discriminator2 = Discriminator()
            generator2 = Generator()
209 210 211 212 213 214
            sgd2 = SGDOptimizer(
                learning_rate=1e-3,
                parameter_list=(
                    discriminator2.parameters() + generator2.parameters()
                ),
            )
215 216 217 218

            d_real2 = discriminator2(to_variable(np.ones([2, 1], np.float32)))
            d_loss_real2 = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
219 220 221
                    x=d_real2, label=to_variable(np.ones([2, 1], np.float32))
                )
            )
222 223

            d_fake2 = discriminator2(
224 225
                generator2(to_variable(np.ones([2, 2], np.float32)))
            )
226 227
            d_loss_fake2 = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
228 229 230
                    x=d_fake2, label=to_variable(np.zeros([2, 1], np.float32))
                )
            )
231 232

            d_loss2 = d_loss_real2 + d_loss_fake2
233
            d_loss2.backward()
234 235 236 237 238
            sgd2.minimize(d_loss2)
            discriminator2.clear_gradients()
            generator2.clear_gradients()

            d_fake2 = discriminator2(
239 240
                generator2(to_variable(np.ones([2, 2], np.float32)))
            )
241 242
            g_loss2 = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
243 244 245
                    x=d_fake2, label=to_variable(np.ones([2, 1], np.float32))
                )
            )
246
            g_loss2.backward()
247 248 249 250 251 252 253 254 255
            sgd2.minimize(g_loss2)
            for p in discriminator2.parameters():
                dy_params2[p.name] = p.numpy()
            for p in generator.parameters():
                dy_params2[p.name] = p.numpy()

            dy_g_loss2 = g_loss2.numpy()
            dy_d_loss2 = d_loss2.numpy()

X
Xin Pan 已提交
256 257
        self.assertEqual(dy_g_loss, static_g_loss)
        self.assertEqual(dy_d_loss, static_d_loss)
258
        for k, v in dy_params.items():
259
            np.testing.assert_allclose(v, static_params[k], rtol=1e-05)
X
Xin Pan 已提交
260

261 262
        self.assertEqual(dy_g_loss2, static_g_loss)
        self.assertEqual(dy_d_loss2, static_d_loss)
263
        for k, v in dy_params2.items():
264
            np.testing.assert_allclose(v, static_params[k], rtol=1e-05)
265

266 267 268 269 270
    def test_gan_float32(self):
        with _test_eager_guard():
            self.func_test_gan_float32()
        self.func_test_gan_float32()

X
Xin Pan 已提交
271 272 273

if __name__ == '__main__':
    unittest.main()