test_imperative_gan.py 8.9 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six
import sys

import paddle
import paddle.fluid as fluid
M
minqiyang 已提交
23
import paddle.fluid.core as core
X
Xin Pan 已提交
24
from paddle.fluid.optimizer import SGDOptimizer
25
from paddle.fluid import Conv2D, Pool2D, Linear
X
Xin Pan 已提交
26
from test_imperative_base import new_program_scope
L
lujun 已提交
27
from paddle.fluid.dygraph.base import to_variable
X
Xin Pan 已提交
28 29


30
class Discriminator(fluid.Layer):
31 32 33 34
    def __init__(self):
        super(Discriminator, self).__init__()
        self._fc1 = Linear(1, 32, act='elu')
        self._fc2 = Linear(32, 1)
X
Xin Pan 已提交
35 36 37

    def forward(self, inputs):
        x = self._fc1(inputs)
38 39
        x = self._fc2(x)
        return x
X
Xin Pan 已提交
40 41


42
class Generator(fluid.Layer):
43 44 45 46 47
    def __init__(self):
        super(Generator, self).__init__()
        self._fc1 = Linear(2, 64, act='elu')
        self._fc2 = Linear(64, 64, act='elu')
        self._fc3 = Linear(64, 1)
X
Xin Pan 已提交
48 49 50 51

    def forward(self, inputs):
        x = self._fc1(inputs)
        x = self._fc2(x)
52 53
        x = self._fc3(x)
        return x
X
Xin Pan 已提交
54 55


L
lujun 已提交
56
class TestDygraphGAN(unittest.TestCase):
M
minqiyang 已提交
57
    def test_gan_float32(self):
X
Xin Pan 已提交
58 59 60 61 62
        seed = 90

        startup = fluid.Program()
        startup.random_seed = seed
        discriminate_p = fluid.Program()
X
Xin Pan 已提交
63 64 65 66
        generate_p = fluid.Program()
        discriminate_p.random_seed = seed
        generate_p.random_seed = seed

X
Xin Pan 已提交
67 68 69
        scope = fluid.core.Scope()
        with new_program_scope(
                main=discriminate_p, startup=startup, scope=scope):
70 71
            discriminator = Discriminator()
            generator = Generator()
X
Xin Pan 已提交
72 73 74 75 76 77 78 79 80

            img = fluid.layers.data(
                name="img", shape=[2, 1], append_batch_size=False)
            noise = fluid.layers.data(
                name="noise", shape=[2, 2], append_batch_size=False)

            d_real = discriminator(img)
            d_loss_real = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
81 82 83
                    x=d_real,
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=1.0)))
X
Xin Pan 已提交
84 85 86 87

            d_fake = discriminator(generator(noise))
            d_loss_fake = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
88 89 90
                    x=d_fake,
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=0.0)))
X
Xin Pan 已提交
91 92 93 94 95 96 97

            d_loss = d_loss_real + d_loss_fake

            sgd = SGDOptimizer(learning_rate=1e-3)
            sgd.minimize(d_loss)

        with new_program_scope(main=generate_p, startup=startup, scope=scope):
98 99
            discriminator = Discriminator()
            generator = Generator()
X
Xin Pan 已提交
100 101 102 103 104 105 106

            noise = fluid.layers.data(
                name="noise", shape=[2, 2], append_batch_size=False)

            d_fake = discriminator(generator(noise))
            g_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
107 108 109
                    x=d_fake,
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=1.0)))
X
Xin Pan 已提交
110 111 112 113

            sgd = SGDOptimizer(learning_rate=1e-3)
            sgd.minimize(g_loss)

M
minqiyang 已提交
114 115
        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
X
Xin Pan 已提交
116
        static_params = dict()
X
Xin Pan 已提交
117 118 119 120
        with fluid.scope_guard(scope):
            img = np.ones([2, 1], np.float32)
            noise = np.ones([2, 2], np.float32)
            exe.run(startup)
X
Xin Pan 已提交
121 122 123 124 125 126 127 128 129
            static_d_loss = exe.run(discriminate_p,
                                    feed={'img': img,
                                          'noise': noise},
                                    fetch_list=[d_loss])[0]
            static_g_loss = exe.run(generate_p,
                                    feed={'noise': noise},
                                    fetch_list=[g_loss])[0]

            # generate_p contains all parameters needed.
X
Xin Pan 已提交
130
            for param in generate_p.global_block().all_parameters():
X
Xin Pan 已提交
131 132 133 134
                static_params[param.name] = np.array(
                    scope.find_var(param.name).get_tensor())

        dy_params = dict()
L
lujun 已提交
135
        with fluid.dygraph.guard():
X
Xin Pan 已提交
136 137 138
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

139 140 141 142 143 144
            discriminator = Discriminator()
            generator = Generator()
            sgd = SGDOptimizer(
                learning_rate=1e-3,
                parameter_list=(
                    discriminator.parameters() + generator.parameters()))
X
Xin Pan 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157

            d_real = discriminator(to_variable(np.ones([2, 1], np.float32)))
            d_loss_real = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_real, label=to_variable(np.ones([2, 1], np.float32))))

            d_fake = discriminator(
                generator(to_variable(np.ones([2, 2], np.float32))))
            d_loss_fake = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake, label=to_variable(np.zeros([2, 1], np.float32))))

            d_loss = d_loss_real + d_loss_fake
L
lujun 已提交
158
            d_loss.backward()
X
Xin Pan 已提交
159
            sgd.minimize(d_loss)
X
Xin Pan 已提交
160 161
            discriminator.clear_gradients()
            generator.clear_gradients()
X
Xin Pan 已提交
162

X
Xin Pan 已提交
163 164 165 166 167
            d_fake = discriminator(
                generator(to_variable(np.ones([2, 2], np.float32))))
            g_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake, label=to_variable(np.ones([2, 1], np.float32))))
L
lujun 已提交
168
            g_loss.backward()
X
Xin Pan 已提交
169 170
            sgd.minimize(g_loss)
            for p in discriminator.parameters():
171
                dy_params[p.name] = p.numpy()
X
Xin Pan 已提交
172
            for p in generator.parameters():
173
                dy_params[p.name] = p.numpy()
X
Xin Pan 已提交
174

175 176
            dy_g_loss = g_loss.numpy()
            dy_d_loss = d_loss.numpy()
X
Xin Pan 已提交
177

178 179 180 181 182 183 184
        dy_params2 = dict()
        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
185 186 187 188 189 190
            discriminator2 = Discriminator()
            generator2 = Generator()
            sgd2 = SGDOptimizer(
                learning_rate=1e-3,
                parameter_list=(
                    discriminator2.parameters() + generator2.parameters()))
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

            d_real2 = discriminator2(to_variable(np.ones([2, 1], np.float32)))
            d_loss_real2 = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_real2, label=to_variable(np.ones([2, 1], np.float32))))

            d_fake2 = discriminator2(
                generator2(to_variable(np.ones([2, 2], np.float32))))
            d_loss_fake2 = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake2, label=to_variable(np.zeros([2, 1], np.float32))))

            d_loss2 = d_loss_real2 + d_loss_fake2
            d_loss2.backward(backward_strategy)
            sgd2.minimize(d_loss2)
            discriminator2.clear_gradients()
            generator2.clear_gradients()

            d_fake2 = discriminator2(
                generator2(to_variable(np.ones([2, 2], np.float32))))
            g_loss2 = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake2, label=to_variable(np.ones([2, 1], np.float32))))
            g_loss2.backward(backward_strategy)
            sgd2.minimize(g_loss2)
            for p in discriminator2.parameters():
                dy_params2[p.name] = p.numpy()
            for p in generator.parameters():
                dy_params2[p.name] = p.numpy()

            dy_g_loss2 = g_loss2.numpy()
            dy_d_loss2 = d_loss2.numpy()

X
Xin Pan 已提交
224 225 226 227
        self.assertEqual(dy_g_loss, static_g_loss)
        self.assertEqual(dy_d_loss, static_d_loss)
        for k, v in six.iteritems(dy_params):
            self.assertTrue(np.allclose(v, static_params[k]))
X
Xin Pan 已提交
228

229 230 231 232 233
        self.assertEqual(dy_g_loss2, static_g_loss)
        self.assertEqual(dy_d_loss2, static_d_loss)
        for k, v in six.iteritems(dy_params2):
            self.assertTrue(np.allclose(v, static_params[k]))

X
Xin Pan 已提交
234 235 236

if __name__ == '__main__':
    unittest.main()