test_imperative_gan.py 8.7 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np
import six
import sys

import paddle
import paddle.fluid as fluid
M
minqiyang 已提交
23
import paddle.fluid.core as core
X
Xin Pan 已提交
24
from paddle.fluid.optimizer import SGDOptimizer
25
from paddle.fluid import Conv2D, Pool2D, FC
X
Xin Pan 已提交
26
from test_imperative_base import new_program_scope
L
lujun 已提交
27
from paddle.fluid.dygraph.base import to_variable
X
Xin Pan 已提交
28 29


30
class Discriminator(fluid.Layer):
X
Xin Pan 已提交
31 32 33 34
    def __init__(self, name_scope):
        super(Discriminator, self).__init__(name_scope)
        self._fc1 = FC(self.full_name(), size=32, act='elu')
        self._fc2 = FC(self.full_name(), size=1)
X
Xin Pan 已提交
35 36 37 38 39 40

    def forward(self, inputs):
        x = self._fc1(inputs)
        return self._fc2(x)


41
class Generator(fluid.Layer):
X
Xin Pan 已提交
42 43 44 45 46
    def __init__(self, name_scope):
        super(Generator, self).__init__(name_scope)
        self._fc1 = FC(self.full_name(), size=64, act='elu')
        self._fc2 = FC(self.full_name(), size=64, act='elu')
        self._fc3 = FC(self.full_name(), size=1)
X
Xin Pan 已提交
47 48 49 50 51 52 53

    def forward(self, inputs):
        x = self._fc1(inputs)
        x = self._fc2(x)
        return self._fc3(x)


L
lujun 已提交
54
class TestDygraphGAN(unittest.TestCase):
M
minqiyang 已提交
55
    def test_gan_float32(self):
X
Xin Pan 已提交
56 57 58 59 60
        seed = 90

        startup = fluid.Program()
        startup.random_seed = seed
        discriminate_p = fluid.Program()
X
Xin Pan 已提交
61 62 63 64
        generate_p = fluid.Program()
        discriminate_p.random_seed = seed
        generate_p.random_seed = seed

X
Xin Pan 已提交
65 66 67
        scope = fluid.core.Scope()
        with new_program_scope(
                main=discriminate_p, startup=startup, scope=scope):
X
Xin Pan 已提交
68 69
            discriminator = Discriminator("d")
            generator = Generator("g")
X
Xin Pan 已提交
70 71 72 73 74 75 76 77 78

            img = fluid.layers.data(
                name="img", shape=[2, 1], append_batch_size=False)
            noise = fluid.layers.data(
                name="noise", shape=[2, 2], append_batch_size=False)

            d_real = discriminator(img)
            d_loss_real = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
79 80 81
                    x=d_real,
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=1.0)))
X
Xin Pan 已提交
82 83 84 85

            d_fake = discriminator(generator(noise))
            d_loss_fake = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
86 87 88
                    x=d_fake,
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=0.0)))
X
Xin Pan 已提交
89 90 91 92 93 94 95

            d_loss = d_loss_real + d_loss_fake

            sgd = SGDOptimizer(learning_rate=1e-3)
            sgd.minimize(d_loss)

        with new_program_scope(main=generate_p, startup=startup, scope=scope):
X
Xin Pan 已提交
96 97
            discriminator = Discriminator("d")
            generator = Generator("g")
X
Xin Pan 已提交
98 99 100 101 102 103 104

            noise = fluid.layers.data(
                name="noise", shape=[2, 2], append_batch_size=False)

            d_fake = discriminator(generator(noise))
            g_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
X
Xin Pan 已提交
105 106 107
                    x=d_fake,
                    label=fluid.layers.fill_constant(
                        shape=[2, 1], dtype='float32', value=1.0)))
X
Xin Pan 已提交
108 109 110 111

            sgd = SGDOptimizer(learning_rate=1e-3)
            sgd.minimize(g_loss)

M
minqiyang 已提交
112 113
        exe = fluid.Executor(fluid.CPUPlace() if not core.is_compiled_with_cuda(
        ) else fluid.CUDAPlace(0))
X
Xin Pan 已提交
114
        static_params = dict()
X
Xin Pan 已提交
115 116 117 118
        with fluid.scope_guard(scope):
            img = np.ones([2, 1], np.float32)
            noise = np.ones([2, 2], np.float32)
            exe.run(startup)
X
Xin Pan 已提交
119 120 121 122 123 124 125 126 127
            static_d_loss = exe.run(discriminate_p,
                                    feed={'img': img,
                                          'noise': noise},
                                    fetch_list=[d_loss])[0]
            static_g_loss = exe.run(generate_p,
                                    feed={'noise': noise},
                                    fetch_list=[g_loss])[0]

            # generate_p contains all parameters needed.
X
Xin Pan 已提交
128
            for param in generate_p.global_block().all_parameters():
X
Xin Pan 已提交
129 130 131 132
                static_params[param.name] = np.array(
                    scope.find_var(param.name).get_tensor())

        dy_params = dict()
L
lujun 已提交
133
        with fluid.dygraph.guard():
X
Xin Pan 已提交
134 135 136
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

X
Xin Pan 已提交
137 138
            discriminator = Discriminator("d")
            generator = Generator("g")
X
Xin Pan 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152
            sgd = SGDOptimizer(learning_rate=1e-3)

            d_real = discriminator(to_variable(np.ones([2, 1], np.float32)))
            d_loss_real = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_real, label=to_variable(np.ones([2, 1], np.float32))))

            d_fake = discriminator(
                generator(to_variable(np.ones([2, 2], np.float32))))
            d_loss_fake = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake, label=to_variable(np.zeros([2, 1], np.float32))))

            d_loss = d_loss_real + d_loss_fake
L
lujun 已提交
153
            d_loss.backward()
X
Xin Pan 已提交
154
            sgd.minimize(d_loss)
X
Xin Pan 已提交
155 156
            discriminator.clear_gradients()
            generator.clear_gradients()
X
Xin Pan 已提交
157

X
Xin Pan 已提交
158 159 160 161 162
            d_fake = discriminator(
                generator(to_variable(np.ones([2, 2], np.float32))))
            g_loss = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake, label=to_variable(np.ones([2, 1], np.float32))))
L
lujun 已提交
163
            g_loss.backward()
X
Xin Pan 已提交
164 165
            sgd.minimize(g_loss)
            for p in discriminator.parameters():
166
                dy_params[p.name] = p.numpy()
X
Xin Pan 已提交
167
            for p in generator.parameters():
168
                dy_params[p.name] = p.numpy()
X
Xin Pan 已提交
169

170 171
            dy_g_loss = g_loss.numpy()
            dy_d_loss = d_loss.numpy()
X
Xin Pan 已提交
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
        dy_params2 = dict()
        with fluid.dygraph.guard():
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed

            backward_strategy = fluid.dygraph.BackwardStrategy()
            backward_strategy.sort_sum_gradient = True
            discriminator2 = Discriminator("d")
            generator2 = Generator("g")
            sgd2 = SGDOptimizer(learning_rate=1e-3)

            d_real2 = discriminator2(to_variable(np.ones([2, 1], np.float32)))
            d_loss_real2 = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_real2, label=to_variable(np.ones([2, 1], np.float32))))

            d_fake2 = discriminator2(
                generator2(to_variable(np.ones([2, 2], np.float32))))
            d_loss_fake2 = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake2, label=to_variable(np.zeros([2, 1], np.float32))))

            d_loss2 = d_loss_real2 + d_loss_fake2
            d_loss2.backward(backward_strategy)
            sgd2.minimize(d_loss2)
            discriminator2.clear_gradients()
            generator2.clear_gradients()

            d_fake2 = discriminator2(
                generator2(to_variable(np.ones([2, 2], np.float32))))
            g_loss2 = fluid.layers.reduce_mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(
                    x=d_fake2, label=to_variable(np.ones([2, 1], np.float32))))
            g_loss2.backward(backward_strategy)
            sgd2.minimize(g_loss2)
            for p in discriminator2.parameters():
                dy_params2[p.name] = p.numpy()
            for p in generator.parameters():
                dy_params2[p.name] = p.numpy()

            dy_g_loss2 = g_loss2.numpy()
            dy_d_loss2 = d_loss2.numpy()

X
Xin Pan 已提交
216 217 218 219
        self.assertEqual(dy_g_loss, static_g_loss)
        self.assertEqual(dy_d_loss, static_d_loss)
        for k, v in six.iteritems(dy_params):
            self.assertTrue(np.allclose(v, static_params[k]))
X
Xin Pan 已提交
220

221 222 223 224 225
        self.assertEqual(dy_g_loss2, static_g_loss)
        self.assertEqual(dy_d_loss2, static_d_loss)
        for k, v in six.iteritems(dy_params2):
            self.assertTrue(np.allclose(v, static_params[k]))

X
Xin Pan 已提交
226 227 228

if __name__ == '__main__':
    unittest.main()