nn.py 112.3 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
M
minqiyang 已提交
16 17
from .. import core
from ..layers import utils
18
from ..layers import nn as F
19
from .. import dygraph_utils
M
minqiyang 已提交
20
from . import layers
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from ..framework import (
    Variable,
    _non_static_mode,
    OpProtoHolder,
    Parameter,
    _dygraph_tracer,
    _varbase_creator,
    default_main_program,
    _global_flags,
    in_dygraph_mode,
    _in_legacy_dygraph,
)
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
M
minqiyang 已提交
39
from ..param_attr import ParamAttr
40
from ..initializer import Normal, Constant, NumpyArrayInitializer
H
hong 已提交
41 42
from .. import unique_name
from .layer_object_helper import LayerObjectHelper
43
from ..data_feeder import check_variable_and_dtype, check_type
L
lujun 已提交
44
import numpy as np
45
import numbers
46
import logging
47
import os
48
import paddle.utils.deprecated as deprecated
49
from paddle import _C_ops, _legacy_C_ops
50

51
__all__ = [
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    'Conv3D',
    'Pool2D',
    'Linear',
    'BatchNorm',
    'Embedding',
    'GRUUnit',
    'NCE',
    'PRelu',
    'BilinearTensorProduct',
    'Conv2DTranspose',
    'Conv3DTranspose',
    'GroupNorm',
    'SpectralNorm',
    'TreeConv',
    'Flatten',
67
]
M
minqiyang 已提交
68 69


L
lujun 已提交
70
class Conv3D(layers.Layer):
71
    r"""
72 73 74 75
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
76
    Output(Output) are multidimensional tensors with a shape of
D
DuYao 已提交
77
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
78 79 80 81 82 83 84 85 86 87 88 89 90 91
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
92
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

118
    Parameters:
119
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
120
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
121
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
122
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
123 124 125
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
126
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
127 128
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
129
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
130 131
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
132
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
133
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
134
        groups (int, optional): The groups number of the Conv3D Layer. According to grouped
135 136 137
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
138 139
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
140 141 142
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
143 144
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
145 146 147
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
148 149 150 151 152
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
153
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
154

D
DuYao 已提交
155 156 157 158
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
159

160
    Returns:
D
DuYao 已提交
161
        None.
162 163 164 165 166 167 168 169

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

170 171 172 173 174 175
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
176
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
177 178
              ret = conv3d(fluid.dygraph.base.to_variable(data))

179 180
    """

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        stride=1,
        padding=0,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
L
lujun 已提交
196
        assert param_attr is not False, "param_attr should not be False here."
197
        super().__init__()
198
        self._num_channels = num_channels
L
lujun 已提交
199 200 201
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
202
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
203 204
        self._act = act
        self._use_cudnn = use_cudnn
205 206 207 208
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
209
        self._dtype = dtype
210 211

        if self._groups is None:
212
            num_filter_channels = self._num_channels
L
lujun 已提交
213
        else:
214
            if self._num_channels % self._groups != 0:
L
lujun 已提交
215
                raise ValueError("num_channels must be divisible by groups.")
216
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
217

218 219
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
220 221

        def _get_default_param_initializer():
222 223 224 225 226 227 228
            filter_elem_num = (
                filter_size[0]
                * filter_size[1]
                * filter_size[2]
                * self._num_channels
            )
            std = (2.0 / filter_elem_num) ** 0.5
L
lujun 已提交
229 230
            return Normal(0.0, std, 0)

231
        self.weight = self.create_parameter(
232
            attr=self._param_attr,
L
lujun 已提交
233 234
            shape=filter_shape,
            dtype=self._dtype,
235 236
            default_initializer=_get_default_param_initializer(),
        )
L
lujun 已提交
237

238 239 240 241 242 243
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
244 245 246

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
            dtype=self._dtype
        )

        self._helper.append_op(
            type='conv3d',
            inputs={
                'Input': input,
                'Filter': self.weight,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            },
        )
L
lujun 已提交
266

267
        if self.bias is not None:
268
            pre_act = self._helper.create_variable_for_type_inference(
269 270 271 272 273 274 275 276
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
277 278
        else:
            pre_act = pre_bias
L
lujun 已提交
279 280 281 282 283

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
284
    r"""
L
lujun 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
330 331 332 333 334 335 336 337
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

338 339
          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d,
          when stride > 1, conv3d maps multiple input shape to the same output shape,
D
DuYao 已提交
340 341
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
342 343 344 345 346
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`,
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}`
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
D
DuYao 已提交
347 348
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
349

350
    Parameters:
351
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
352 353
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
354
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
355
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
356
            Otherwise, the filter will be a square.
D
DuYao 已提交
357 358 359 360 361 362 363 364 365 366
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
367 368 369
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution.
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height,
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride.
D
DuYao 已提交
370 371
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
372
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
373
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
C
cnn 已提交
374
        groups(int, optional): The groups number of the Conv3D transpose layer. Inspired by
L
lujun 已提交
375 376 377 378
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
379 380
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
381 382
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
383 384
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
385 386 387
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
388 389 390 391 392
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
393
        name(str, optional): The default value is None. Normally there is no need for user
D
DuYao 已提交
394
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
395

D
DuYao 已提交
396 397 398 399
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
400

L
lujun 已提交
401
    Returns:
D
DuYao 已提交
402
        None.
L
lujun 已提交
403 404 405 406 407 408 409 410

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

411 412 413 414 415 416
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
417
                    num_channels=3,
418 419 420 421 422
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
423 424
    """

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
440
        super().__init__()
L
lujun 已提交
441 442
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
443 444 445
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv3d_transpose."
L
lujun 已提交
446 447 448 449
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
450
        self._num_channels = num_channels
L
lujun 已提交
451 452 453 454 455 456
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
457
        self._dtype = dtype
L
lujun 已提交
458

459
        self._filter_size = utils.convert_to_list(
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
            self._filter_size, 3, 'conv3d_transpose.filter_size'
        )

        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
476 477 478

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
479 480 481 482 483 484 485 486 487 488 489 490 491 492
            dtype=self._dtype
        )
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input], 'Filter': [self.weight]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
            },
        )
L
lujun 已提交
493 494 495

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
496 497 498 499 500 501 502 503
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
L
lujun 已提交
504 505 506 507 508 509 510
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
511
class Pool2D(layers.Layer):
512
    r"""
513

514 515 516 517 518
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
519 520
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
521

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

566
    Parameters:
567
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
568
            it must contain two integers, (pool_size_Height, pool_size_Width).
569
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
570
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling.
571 572
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
573
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
574
            the pool stride size will be a square of an int. Default: 1.
575
        pool_padding (int or list or tuple, optional): The padding size for pooling operation.
576
            If ``pool_padding`` is a tuple,
577
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
578 579 580 581 582 583 584
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
585 586
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
            The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
587
            ``[batch_size, input_channels, input_height, input_width]``. When it is `"NHWC"`, the data is
588
            stored in the order of: ``[batch_size, input_height, input_width, input_channels]``
589 590

    Returns:
591
        None
592 593

    Raises:
594 595 596 597
        ValueError: If ``pool_type`` is not "max" nor "avg".
        ValueError: If ``global_pooling`` is False and ``pool_size`` is -1.
        ValueError: If ``use_cudnn`` is not a bool value.
        ValueError: If ``data_format`` is not "NCHW" nor "NHWC".
598 599 600 601 602

    Examples:

        .. code-block:: python

L
lujun 已提交
603
          import paddle.fluid as fluid
604 605
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
606 607

          with fluid.dygraph.guard():
608
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
609
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
610 611 612
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
613
             pool2d_res = pool2d(to_variable(data))
614 615 616

    """

617 618 619 620 621 622 623 624 625 626 627 628
    def __init__(
        self,
        pool_size=-1,
        pool_type="max",
        pool_stride=1,
        pool_padding=0,
        global_pooling=False,
        use_cudnn=True,
        ceil_mode=False,
        exclusive=True,
        data_format="NCHW",
    ):
629 630
        data_format = data_format.upper()  # supprt NHWC, nhwc, etc.
        pool_type = pool_type.lower()  # supprt max, Max, etc.
M
minqiyang 已提交
631 632 633
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
634 635
                str(pool_type),
            )
M
minqiyang 已提交
636 637 638 639

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
640 641
                "and be a valid value. Received pool_size: " + str(pool_size)
            )
M
minqiyang 已提交
642 643 644 645

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

646
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
647

648 649 650
        if data_format not in ["NCHW", "NHWC"]:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
651 652
                "Attr(data_format): %s." % str(data_format)
            )
653

654
        super().__init__()
M
minqiyang 已提交
655 656 657

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
658 659 660
        self._pool_padding = utils.convert_to_list(
            pool_padding, 2, 'pool_padding'
        )
M
minqiyang 已提交
661 662 663 664 665
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
666
        self._data_format = data_format
M
minqiyang 已提交
667 668 669
        self._l_type = 'pool2d'

    def forward(self, input):
J
Jiabin Yang 已提交
670
        if _non_static_mode():
671
            if not self._use_mkldnn and in_dygraph_mode():
672
                input = input._use_gpudnn(self._use_cudnn)
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
                return _C_ops.pool2d(
                    input,
                    self._pool_size,
                    self._pool_stride,
                    self._pool_padding,
                    self._ceil_mode,
                    self._exclusive,
                    self._data_format,
                    self._pool_type,
                    self._global_pooling,
                    False,
                    "EXPLICIT",
                )

            attrs = (
                'pooling_type',
                self._pool_type,
                'ksize',
                self._pool_size,
                'global_pooling',
                self._global_pooling,
                'strides',
                self._pool_stride,
                'paddings',
                self._pool_padding,
                'use_cudnn',
                self._use_cudnn,
                'ceil_mode',
                self._ceil_mode,
                'use_mkldnn',
                self._use_mkldnn,
                'exclusive',
                self._exclusive,
                'data_format',
                self._data_format,
            )
709
            return _legacy_C_ops.pool2d(input, *attrs)
710

711
        check_variable_and_dtype(
712 713 714 715 716
            input,
            'input',
            ['int8', 'uint8', 'float16', 'float32', 'float64'],
            'Pool2D',
        )
717

718 719 720 721 722 723 724 725
        attrs = {
            "pooling_type": self._pool_type,
            "ksize": self._pool_size,
            "global_pooling": self._global_pooling,
            "strides": self._pool_stride,
            "paddings": self._pool_padding,
            "use_cudnn": self._use_cudnn,
            "ceil_mode": self._ceil_mode,
726
            "use_mkldnn": self._use_mkldnn,
727
            "exclusive": self._exclusive,
728
            "data_format": self._data_format,
729 730 731
        }
        inputs = {"X": [input]}

M
minqiyang 已提交
732 733
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

734 735 736 737 738 739
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
            outputs={"Out": pool_out},
            attrs=attrs,
        )
M
minqiyang 已提交
740
        return pool_out
M
minqiyang 已提交
741 742


S
songyouwei 已提交
743 744
class Linear(layers.Layer):
    """
745

S
songyouwei 已提交
746 747 748 749 750 751 752 753
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

754
    Linear layer takes only one ``Tensor`` input.
S
songyouwei 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

795 796 797 798 799 800 801 802 803
    def __init__(
        self,
        input_dim,
        output_dim,
        param_attr=None,
        bias_attr=None,
        act=None,
        dtype="float32",
    ):
804
        super().__init__()
S
songyouwei 已提交
805 806
        self._act = act
        self._dtype = dtype
807 808 809 810 811 812 813 814 815
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False,
        )
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True
        )
S
songyouwei 已提交
816

817
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
818

S
songyouwei 已提交
819
    def forward(self, input):
J
Jiabin Yang 已提交
820
        if _non_static_mode():
821
            pre_bias = _varbase_creator(dtype=input.dtype)
822 823 824 825 826 827 828 829 830 831 832 833 834
            _legacy_C_ops.matmul(
                input,
                self.weight,
                pre_bias,
                'transpose_X',
                False,
                'transpose_Y',
                False,
                "alpha",
                1,
                "use_mkldnn",
                self._use_mkldnn,
            )
835
            pre_act = dygraph_utils._append_bias_in_dygraph(
836 837 838
                pre_bias,
                self.bias,
                axis=len(input.shape) - 1,
839 840
                use_mkldnn=self._use_mkldnn,
            )
841

842
            return dygraph_utils._append_activation_in_dygraph(
843 844
                pre_act, self._act, use_mkldnn=self._use_mkldnn
            )
845

846 847 848
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Linear"
        )
849

850
        attrs = {
S
songyouwei 已提交
851 852 853
            "transpose_X": False,
            "transpose_Y": False,
            "alpha": 1,
854
            "use_mkldnn": self._use_mkldnn,
855 856
        }
        inputs = {"X": [input], "Y": [self.weight]}
857

S
songyouwei 已提交
858
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
859 860 861
        self._helper.append_op(
            type="matmul", inputs=inputs, outputs={"Out": tmp}, attrs=attrs
        )
862
        if self.bias is not None:
S
songyouwei 已提交
863
            pre_activation = self._helper.create_variable_for_type_inference(
864 865 866 867 868 869 870 871 872 873 874
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={
                    'axis': len(input.shape) - 1,
                    'use_mkldnn': self._use_mkldnn,
                },
            )
S
songyouwei 已提交
875 876 877 878 879
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


M
minqiyang 已提交
880
class BatchNorm(layers.Layer):
881
    r"""
882

883 884
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
885
    It implements the function of the Batch Normalization Layer and can be used
886 887
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
888 889 890 891
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

892
    When use_global_stats = False, the :math:`\mu_{\beta}`
893
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
894
    Calculated as follows:
895 896 897

    ..  math::

898 899 900 901
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &
        //\ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \qquad &
        //\ mini-batch\ variance \\
902

903 904
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
905 906 907

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
908 909 910 911 912 913
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
914

915
    The normalization function formula is as follows:
916

917 918
    ..  math::

919 920 921 922
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift

923

924 925 926
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
927

928
    Parameters:
929
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
T
tianshuo78520a 已提交
930
        act(str, optional): Activation to be applied to the output of batch normalization. Default: None.
931 932 933
        is_test (bool, optional): A flag indicating whether it is in test phrase or not.
             This flag only has effect on static graph mode. For dygraph mode, please use ``eval()``.
             Default: False.
934 935 936
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
937 938 939
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
940
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
941 942 943
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
944 945 946 947 948 949
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
950 951
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
952
        use_global_stats(bool, optional): Whether to use global mean and
953 954 955
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
956 957 958 959
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
960 961

    Returns:
962
        None
963 964 965

    Examples:
        .. code-block:: python
L
lujun 已提交
966 967

          import paddle.fluid as fluid
968 969
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
970

971
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
972
          with fluid.dygraph.guard():
973
              x = to_variable(x)
974
              batch_norm = fluid.BatchNorm(10)
975
              hidden1 = batch_norm(x)
976 977
    """

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
    def __init__(
        self,
        num_channels,
        act=None,
        is_test=False,
        momentum=0.9,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
        data_layout='NCHW',
        in_place=False,
        moving_mean_name=None,
        moving_variance_name=None,
        do_model_average_for_mean_and_var=True,
        use_global_stats=False,
        trainable_statistics=False,
    ):
996
        super().__init__()
997
        self._param_attr = param_attr
998
        self._bias_attr = bias_attr
999
        self._act = act
1000
        self._use_mkldnn = _global_flags()["FLAGS_use_mkldnn"]
M
minqiyang 已提交
1001

1002 1003 1004
        assert (
            bias_attr is not False
        ), "bias_attr should not be False in batch_norm."
M
minqiyang 已提交
1005

1006 1007
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1008 1009 1010 1011 1012 1013
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
        self.weight.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
        self.bias.stop_gradient = (
            use_global_stats and self._param_attr.learning_rate == 0.0
        )

        self._mean = self.create_parameter(
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1044
        self._mean.stop_gradient = True
M
minqiyang 已提交
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
        self._variance = self.create_parameter(
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var,
            ),
            shape=param_shape,
            dtype=self._dtype,
        )
1056
        self._variance.stop_gradient = True
M
minqiyang 已提交
1057 1058

        self._in_place = in_place
1059
        self._data_layout = data_layout
M
minqiyang 已提交
1060 1061 1062
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1063
        self._fuse_with_relu = False
M
minqiyang 已提交
1064
        self._use_global_stats = use_global_stats
1065
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1066 1067 1068 1069 1070 1071 1072

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance
1073

J
Jiabin Yang 已提交
1074
        if _non_static_mode():
H
hong 已提交
1075
            if in_dygraph_mode():
1076
                batch_norm_out, t1, t2, t3, t4, _ = _C_ops.batch_norm(
1077 1078 1079
                    input,
                    self._mean,
                    self._variance,
1080 1081 1082
                    self.weight,
                    self.bias,
                    not self.training,
1083 1084 1085 1086 1087 1088
                    self._momentum,
                    self._epsilon,
                    self._data_layout,
                    self._use_global_stats,
                    self._trainable_statistics,
                )
1089
                return dygraph_utils._append_activation_in_dygraph(
1090 1091
                    batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
                )
1092 1093

            elif _in_legacy_dygraph():
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
                attrs = (
                    "momentum",
                    self._momentum,
                    "epsilon",
                    self._epsilon,
                    "is_test",
                    not self.training,
                    "data_layout",
                    self._data_layout,
                    "use_mkldnn",
                    self._use_mkldnn,
                    "fuse_with_relu",
                    self._fuse_with_relu,
                    "use_global_stats",
                    self._use_global_stats,
                    'trainable_statistics',
                    self._trainable_statistics,
                )
1112
                batch_norm_out, _, _, _, _, _ = _legacy_C_ops.batch_norm(
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
                    input,
                    self.weight,
                    self.bias,
                    self._mean,
                    self._variance,
                    None,
                    mean_out,
                    variance_out,
                    *attrs
                )
1123

1124
            return dygraph_utils._append_activation_in_dygraph(
1125 1126
                batch_norm_out, act=self._act, use_mkldnn=self._use_mkldnn
            )
1127

1128 1129 1130
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], 'BatchNorm'
        )
1131

1132 1133 1134 1135 1136 1137 1138
        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": self._is_test,
            "data_layout": self._data_layout,
            "use_mkldnn": False,
            "fuse_with_relu": self._fuse_with_relu,
1139 1140
            "use_global_stats": self._use_global_stats,
            "trainable_statistics": self._trainable_statistics,
1141
        }
M
minqiyang 已提交
1142

1143 1144 1145 1146 1147
        inputs = {
            "X": [input],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1148
            "Variance": [self._variance],
1149 1150
        }

1151
        saved_mean = self._helper.create_variable_for_type_inference(
1152 1153
            dtype=self._dtype, stop_gradient=True
        )
1154
        saved_variance = self._helper.create_variable_for_type_inference(
1155 1156
            dtype=self._dtype, stop_gradient=True
        )
1157
        reserve_space = self._helper.create_variable_for_type_inference(
1158 1159
            dtype=self._helper.input_dtype(input), stop_gradient=True
        )
1160

1161 1162 1163 1164 1165
        batch_norm_out = (
            input
            if self._in_place
            else self._helper.create_variable_for_type_inference(self._dtype)
        )
1166 1167 1168 1169 1170 1171

        outputs = {
            "Y": [batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1172
            "SavedVariance": [saved_variance],
1173
        }
1174
        if reserve_space is not None:
1175
            outputs["ReserveSpace"] = [reserve_space]
1176

1177 1178 1179
        self._helper.append_op(
            type="batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
M
minqiyang 已提交
1180

L
lujun 已提交
1181
        # Currently, we don't support inplace in dygraph mode
1182
        return self._helper.append_activation(batch_norm_out, self._act)
1183 1184


1185
class Embedding(layers.Layer):
1186
    r"""
1187
    :alias_main: paddle.nn.Embedding
1188 1189
        :alias: paddle.nn.Embedding,paddle.nn.layer.Embedding,paddle.nn.layer.common.Embedding
        :old_api: paddle.fluid.dygraph.Embedding
1190

1191 1192
    **Embedding Layer**

Z
zhongpu 已提交
1193 1194 1195 1196 1197 1198
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1199 1200
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1201

1202
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1203 1204 1205 1206 1207 1208 1209
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1210 1211
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1212 1213 1214 1215 1216 1217 1218 1219
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
1220

Z
zhongpu 已提交
1221 1222 1223 1224
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1225

1226
    Parameters:
L
lujun 已提交
1227 1228
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1229
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
1230
            affects the performance of the backwards gradient update. It is recommended to set
Z
zhongpu 已提交
1231
            True because sparse update is faster. But some optimizer does not support sparse update,
1232
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` ,
Z
zhongpu 已提交
1233 1234 1235 1236 1237
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
1238
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size).
Z
zhongpu 已提交
1239 1240 1241 1242 1243 1244
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
1245
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter.
Z
zhongpu 已提交
1246
            The local word vector needs to be transformed into numpy format, and the shape of local word
T
tianshuo78520a 已提交
1247
            vector should be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
Z
zhongpu 已提交
1248 1249 1250
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1251

Z
zhongpu 已提交
1252 1253
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1254

1255
    Returns:
Z
zhongpu 已提交
1256
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1257 1258

    Examples:
1259

1260 1261
        .. code-block:: python

L
lujun 已提交
1262 1263 1264 1265
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1266
          # example 1
1267 1268
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1269 1270
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1271
              emb = fluid.dygraph.Embedding(
1272 1273 1274
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1275
              static_rlt3 = emb(base.to_variable(inp_word))
1276
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
1290
              static_rlt3 = emb(base.to_variable(inp_word))
1291 1292
    """

1293 1294 1295 1296 1297 1298 1299 1300 1301
    def __init__(
        self,
        size,
        is_sparse=False,
        is_distributed=False,
        padding_idx=None,
        param_attr=None,
        dtype='float32',
    ):
1302
        super().__init__()
1303 1304 1305
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
1306 1307 1308 1309 1310 1311 1312
        self._padding_idx = (
            -1
            if padding_idx is None
            else padding_idx
            if padding_idx >= 0
            else (size[0] + padding_idx)
        )
1313 1314 1315

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1316
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1317 1318 1319
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1320 1321 1322 1323 1324 1325
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False,
        )
1326 1327

    def forward(self, input):
J
Jiabin Yang 已提交
1328
        if _non_static_mode():
1329
            return _legacy_C_ops.lookup_table_v2(
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
                self.weight,
                input,
                'is_sparse',
                self._is_sparse,
                'is_distributed',
                self._is_distributed,
                'remote_prefetch',
                self._remote_prefetch,
                'padding_idx',
                self._padding_idx,
            )
1341

1342 1343 1344 1345 1346 1347
        check_variable_and_dtype(
            input,
            'input',
            ['uint8', 'int8', 'int16', 'int32', 'int64'],
            'Embedding',
        )
1348 1349 1350 1351
        attrs = {
            'is_sparse': self._is_sparse,
            'is_distributed': self._is_distributed,
            'remote_prefetch': self._remote_prefetch,
1352
            'padding_idx': self._padding_idx,
1353
        }
1354

1355
        out = self._helper.create_variable_for_type_inference(self._dtype)
1356 1357 1358 1359 1360 1361
        self._helper.append_op(
            type='lookup_table_v2',
            inputs={'Ids': input, 'W': self.weight},
            outputs={'Out': out},
            attrs=attrs,
        )
1362 1363

        return out
M
minqiyang 已提交
1364 1365 1366 1367 1368


class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
1369

D
DuYao 已提交
1370 1371
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
1372
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
D
DuYao 已提交
1373
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1384
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1410
    Parameters:
L
lujun 已提交
1411
        size (int): The input dimension value.
D
DuYao 已提交
1412
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1413 1414
            hidden-hidden weight matrix.

D
DuYao 已提交
1415
            **Note**:
1416

D
DuYao 已提交
1417
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
1418 1419
                2. All elements in the weight matrix can be divided into two parts. The first
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`,
D
DuYao 已提交
1420
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1421 1422 1423 1424


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
1425
            is not set, the parameter is initialized with Xavier. The default
D
DuYao 已提交
1426 1427 1428
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1429 1430 1431 1432 1433
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1434
            is initialized zero. The default value is None.
L
lujun 已提交
1435
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1436
                             The default value is 'tanh'.
L
lujun 已提交
1437
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1438 1439 1440
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1441

D
DuYao 已提交
1442 1443 1444 1445
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1446

M
minqiyang 已提交
1447
    Returns:
D
DuYao 已提交
1448 1449
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
1450
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with
D
DuYao 已提交
1451
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1465
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1466 1467 1468
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1469
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1470 1471 1472
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1473 1474
    """

1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
    def __init__(
        self,
        size,
        param_attr=None,
        bias_attr=None,
        activation='tanh',
        gate_activation='sigmoid',
        origin_mode=False,
        dtype='float32',
    ):
1485
        super().__init__()
1486
        self._bias_attr = bias_attr
M
minqiyang 已提交
1487 1488 1489 1490
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
1491 1492
            relu=3,
        )
H
Hongyu Liu 已提交
1493 1494
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1495

M
minqiyang 已提交
1496
        self._dtype = dtype
M
minqiyang 已提交
1497 1498
        size = size // 3
        # create weight
1499 1500 1501
        self.weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype
        )
M
minqiyang 已提交
1502 1503

        # create bias
M
minqiyang 已提交
1504
        bias_size = [1, 3 * size]
1505
        self._bias_size = bias_size
1506 1507 1508
        self.bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True
        )
M
minqiyang 已提交
1509

M
minqiyang 已提交
1510
    def forward(self, input, hidden):
J
Jiabin Yang 已提交
1511
        if _non_static_mode():
1512
            gate, reset_hidden_pre, updated_hidden = _legacy_C_ops.gru_unit(
1513 1514 1515 1516 1517 1518 1519 1520 1521
                input,
                hidden,
                self.weight,
                self.bias,
                'activation',
                self.activation,
                'gate_activation',
                self.gate_activation,
            )
1522 1523
            return updated_hidden, reset_hidden_pre, gate

1524 1525 1526 1527 1528 1529
        check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'GRUUnit'
        )
        check_variable_and_dtype(
            hidden, 'hidden', ['float32', 'float64'], 'GRUUnit'
        )
1530 1531 1532
        inputs = {
            'Input': [input],
            'HiddenPrev': [hidden],
1533
            'Weight': [self.weight],
1534
        }
1535
        if self.bias is not None:
1536
            inputs['Bias'] = [self.bias]
M
minqiyang 已提交
1537 1538
        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
1539 1540
            self._dtype
        )
M
minqiyang 已提交
1541
        updated_hidden = self._helper.create_variable_for_type_inference(
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
            self._dtype
        )
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
                'activation': self.activation,
                'gate_activation': self.gate_activation,
            },
        )
M
minqiyang 已提交
1557 1558

        return updated_hidden, reset_hidden_pre, gate
1559 1560 1561 1562


class NCE(layers.Layer):
    """
1563 1564 1565 1566 1567
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1568
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1569

1570
    Parameters:
1571 1572
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1573
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1574 1575 1576
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1577
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1578 1579 1580 1581
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1582
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
T
tianshuo78520a 已提交
1583
        sampler (str, optional): The sampler used to sample class from negative classes.
1584 1585
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1586
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1587
                       It is used when sampler is set to 'custom_dist'.
1588
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1589
                       Default: None.
1590 1591
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1592
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1593

1594 1595
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1596

1597
        **bias** (Parameter or None): the learnable bias of this layer.
1598

1599
    Returns:
1600
        None
1601 1602 1603 1604

    Examples:
        .. code-block:: python

1605 1606 1607
            import numpy as np
            import paddle.fluid as fluid

1608
            window_size = 5
1609 1610
            dict_size = 20
            label_word = int(window_size // 2) + 1
1611
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1633
                nce = fluid.NCE(
1634
                             num_total_classes=dict_size,
1635
                             dim=embs3.shape[1],
1636 1637 1638 1639 1640 1641 1642
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1643 1644
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1645 1646 1647

    """

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
    def __init__(
        self,
        num_total_classes,
        dim,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
        num_neg_samples=None,
        sampler="uniform",
        custom_dist=None,
        seed=0,
        is_sparse=False,
        dtype='float32',
    ):
1662
        super().__init__()
1663 1664 1665
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1666
        self._dtype = dtype
1667
        self._inputs = dict()
1668 1669 1670
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
1726 1727
                    default_initializer=NumpyArrayInitializer(numpy_array),
                )
1728 1729 1730 1731
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
1732 1733
                np.array(custom_dist).astype('float32')
            )
1734
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
1735 1736
                np.array(alias_).astype('int32')
            )
1737
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
1738 1739
                np.array(alias_probs_).astype('float32')
            )
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
1759
            'remote_prefetch': remote_prefetch,
1760 1761
        }

1762
        self.weight = self.create_parameter(
1763 1764 1765
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
1766 1767
            dtype=self._dtype,
        )
1768
        if self._bias_attr:
1769
            self.bias = self.create_parameter(
1770 1771 1772
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
1773 1774
                dtype=self._dtype,
            )
1775 1776
            self._inputs['Bias'] = self.bias
        self._inputs['Weight'] = self.weight
1777

1778
    def forward(self, input, label, sample_weight=None):
J
Jiabin Yang 已提交
1779
        if _non_static_mode():
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
            attrs = (
                'num_total_classes',
                self._attrs['num_total_classes'],
                'num_neg_samples',
                self._attrs['num_neg_samples'],
                'seed',
                self._attrs['seed'],
                'sampler',
                self._attrs['sampler'],
                'is_sparse',
                self._attrs['is_sparse'],
                'remote_prefetch',
                self._attrs['remote_prefetch'],
            )
            cost, _, _ = _legacy_C_ops.nce(
                input,
                label,
                self.weight,
                self.bias,
                self._inputs['SampleWeight'],
                self._inputs['CustomDistProbs'],
                self._inputs['CustomDistAlias'],
                self._inputs['CustomDistAliasProbs'],
                *attrs
            )
W
Weilong Wu 已提交
1805 1806
            return cost / (self._num_neg_samples + 1)

1807 1808
        check_variable_and_dtype(input, "input", ['float32', 'float64'], "NCE")
        check_variable_and_dtype(label, "label", ['int64'], "NCE")
1809 1810 1811
        check_type(
            sample_weight, 'sample_weight', (Variable, type(None)), 'NCE'
        )
1812 1813 1814 1815 1816
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
1817 1818 1819
        self._inputs['SampleWeight'] = (
            sample_weight if sample_weight is not None else []
        )
1820 1821

        cost = self._helper.create_variable_for_type_inference(
1822 1823
            dtype=input.dtype
        )
1824
        sample_logits = self._helper.create_variable_for_type_inference(
1825 1826
            dtype=input.dtype
        )
1827
        sample_labels = self._helper.create_variable_for_type_inference(
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
            dtype=label.dtype
        )

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels,
            },
            attrs=self._attrs,
        )
1841 1842 1843 1844
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
1845
    r"""
1846 1847 1848 1849
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

1850 1851 1852 1853 1854
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

1855
    Parameters:
L
lujun 已提交
1856
        mode (str): The mode for weight sharing. It supports all, channel
1857 1858 1859
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
S
songyouwei 已提交
1860 1861 1862
        channel (int, optional): The number of channels.
          This argument is required when mode is "channel".
          Default: None.
1863
        input_shape (list or tuple, optional): The shape of input.
S
songyouwei 已提交
1864 1865
          This argument is required when mode is "element".
          Default: None.
1866 1867
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
1868
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1869

1870 1871
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1872

1873
    Returns:
1874
        None
1875 1876 1877 1878 1879

    Examples:

        .. code-block:: python

L
lujun 已提交
1880
          import paddle.fluid as fluid
1881
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
1882 1883 1884 1885
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
1886
              inp_np = to_variable(inp_np)
S
songyouwei 已提交
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
              prelu0 = fluid.PRelu(
                 mode='all',
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt0 = prelu0(inp_np)
              prelu1 = fluid.PRelu(
                 mode='channel',
                 channel=200,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt1 = prelu1(inp_np)
              prelu2 = fluid.PRelu(
                 mode='element',
1898
                 input_shape=inp_np.shape,
L
lujun 已提交
1899
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
S
songyouwei 已提交
1900
              dy_rlt2 = prelu2(inp_np)
L
lujun 已提交
1901

1902 1903
    """

1904 1905 1906 1907 1908 1909 1910 1911
    def __init__(
        self,
        mode,
        channel=None,
        input_shape=None,
        param_attr=None,
        dtype='float32',
    ):
1912
        # need specify name_scope since snake-cased 'PRelu' is 'p_relu'
1913
        super().__init__(name_scope='prelu')
1914 1915
        self._mode = mode
        self._param_attr = param_attr
1916
        self._dtype = dtype
S
songyouwei 已提交
1917 1918 1919 1920
        if mode == 'all':
            self._alpha_shape = [1]
        elif mode == 'channel':
            assert isinstance(
1921 1922 1923
                channel, int
            ), "channel argument is required when mode is 'channel'."
            # NOTE(zhiqiu): The _alpha_shape should be [1, channel] + [1] * len(input_shape[2:]), not [1, channel, 1, 1].
1924
            # However, the suffix 1 in the list is useless, since the tensor is viewed as one demension array during kernel calculation.
1925
            # And, input_shape is not required when mode is 'channel', so it is simplified.
1926
            # NOTE(zhiqiu): Revert shape to [1, channel, 1, 1] for compatibility with saved model of old version.
1927
            self._alpha_shape = [1, channel, 1, 1]
S
songyouwei 已提交
1928
        elif mode == 'element':
1929
            assert isinstance(
1930 1931
                input_shape, (list, tuple)
            ), "input_shape argument is required when mode is 'element'."
S
songyouwei 已提交
1932 1933 1934
            self._alpha_shape = [1] + list(input_shape)[1:]
        else:
            raise ValueError('mode should be one of all, channel, element.')
1935 1936 1937 1938 1939 1940 1941
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0),
        )
1942 1943

    def forward(self, input):
1944 1945 1946
        if in_dygraph_mode():
            return _C_ops.prelu(input, self.weight, "NCHW", self._mode)

1947
        check_variable_and_dtype(input, 'input', ['float32'], 'PRelu')
1948
        out = self._helper.create_variable_for_type_inference(self._dtype)
1949 1950 1951 1952 1953 1954
        self._helper.append_op(
            type="prelu",
            inputs={"X": input, 'Alpha': self.weight},
            attrs={"mode": self._mode},
            outputs={"Out": out},
        )
1955 1956 1957 1958
        return out


class BilinearTensorProduct(layers.Layer):
1959
    r"""
1960

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
1974
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
1975

1976
    Parameters:
1977 1978 1979 1980 1981
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
1982
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
1983
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of
D
DuYao 已提交
1984 1985
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
1986
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
1987
           If it is set to None, the bias is initialized zero. The default value is None.
1988
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1989

D
DuYao 已提交
1990 1991 1992 1993
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1994

1995
    Returns:
W
wanghuancoder 已提交
1996
       Tensor: A 2-D Tensor of shape [batch_size, size].
1997 1998 1999 2000

    Examples:
       .. code-block:: python

W
wanghuancoder 已提交
2001 2002 2003 2004 2005 2006 2007 2008 2009
        import paddle
        import numpy

        layer1 = numpy.random.random((5, 5)).astype('float32')
        layer2 = numpy.random.random((5, 4)).astype('float32')
        bilinearTensorProduct = paddle.nn.BilinearTensorProduct(
            input1_dim=5, input2_dim=4, output_dim=1000)
        ret = bilinearTensorProduct(paddle.to_tensor(layer1),
                                    paddle.to_tensor(layer2))
2010

2011 2012
    """

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
    def __init__(
        self,
        input1_dim,
        input2_dim,
        output_dim,
        name=None,
        act=None,
        param_attr=None,
        bias_attr=None,
        dtype='float32',
    ):
2024
        super().__init__()
2025 2026 2027 2028
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2029 2030 2031
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2032
        self._inputs = dict()
2033
        self._dtype = dtype
2034

2035
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2036 2037 2038 2039 2040 2041
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False,
        )
2042
        bias_size = [1, self._output_dim]
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True,
        )

    @deprecated(
        since="2.0.0",
        update_to="paddle.nn.Bilinear",
        reason="New name and new args in Bilinear, easier to use.",
    )
2055
    def forward(self, x, y):
2056 2057 2058 2059 2060 2061
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'BilinearTensorProduct'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'BilinearTensorProduct'
        )
2062
        self._inputs = {"X": x, "Y": y, "Weight": self.weight}
2063
        if self.bias is not None:
2064
            self._inputs["Bias"] = self.bias
2065
        if self._name is not None:
2066 2067 2068 2069 2070
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False,
            )
2071
        else:
2072 2073 2074 2075 2076 2077 2078 2079
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False
            )
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out},
        )
2080 2081

        # add activation
2082
        return self._helper.append_activation(out, act=self._act)
2083 2084 2085


class Conv2DTranspose(layers.Layer):
2086
    r"""
2087 2088
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2089
    The convolution2D transpose layer calculates the output based on the input,
2090 2091 2092
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2093 2094
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2095 2096
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2097 2098 2099
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2100 2101
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2102 2103 2104 2105 2106 2107 2108 2109 2110

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2111 2112
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2113
    * :math:`\\ast`: Convolution operation.
2114
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2139
    Parameters:
2140
        num_channels(int): The number of channels in the input image.
2141
        num_filters(int): The number of the filter. It is as same as the output
2142
            feature map.
2143 2144 2145
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2146
        output_size(int or tuple, optional): The output image size. If output size is a
2147 2148 2149
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2150
            should follow the formula above. Default: None.
2151
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2152
            contain two integers, (padding_H, padding_W). Otherwise, the
2153 2154
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2155
            contain two integers, (stride_H, stride_W). Otherwise, the
2156 2157
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2158
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2159
            dilation_H = dilation_W = dilation. Default: 1.
C
cnn 已提交
2160
        groups(int, optional): The groups number of the Conv2D transpose layer. Inspired by
2161 2162 2163 2164
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2165 2166
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2167 2168 2169
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2170
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2171 2172 2173 2174
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2175
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2176
            library is installed. Default: True.
2177
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2178
            Default: None.
2179
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2180

2181 2182
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2183

2184
        **bias** (Parameter or None): the learnable bias of this layer.
2185

2186 2187
    Returns:
        None
2188 2189 2190 2191

    Examples:
       .. code-block:: python

2192
          import paddle.fluid as fluid
2193
          import numpy as np
2194 2195

          with fluid.dygraph.guard():
2196
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2197
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2198
                    num_channels=32, num_filters=2, filter_size=3)
2199 2200
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2201 2202
    """

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
    def __init__(
        self,
        num_channels,
        num_filters,
        filter_size,
        output_size=None,
        padding=0,
        stride=1,
        dilation=1,
        groups=None,
        param_attr=None,
        bias_attr=None,
        use_cudnn=True,
        act=None,
        dtype='float32',
    ):
2219
        super().__init__()
2220 2221 2222
        assert (
            param_attr is not False
        ), "param_attr should not be False in conv2d_transpose."
2223 2224
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2225
        self._act = act
2226
        self._groups = groups
2227
        self._num_channels = num_channels
2228 2229 2230 2231 2232 2233 2234
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2235
        self._dtype = dtype
2236

2237 2238 2239 2240 2241
        if (
            self._num_channels == self._groups
            and self._num_filters == self._num_channels
            and not self._use_cudnn
        ):
2242
            self._op_type = 'depthwise_conv2d_transpose'
2243 2244
        else:
            self._op_type = 'conv2d_transpose'
2245 2246 2247 2248 2249

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2250
        self._filter_size = utils.convert_to_list(
2251 2252
            self._filter_size, 2, 'conv2d_transpose.filter_size'
        )
2253 2254 2255

        if self._output_size is None:
            self._output_size = []
2256 2257 2258
        elif isinstance(self._output_size, list):
            if utils._contain_var(self._output_size):
                self._output_size = utils._convert_to_tensor_list(
2259 2260
                    self._output_size
                )
2261 2262
            else:
                self._output_size = utils.convert_to_list(
2263 2264
                    self._output_size, 2, 'output_size'
                )
2265
        elif isinstance(self._output_size, int):
2266 2267 2268
            self._output_size = utils.convert_to_list(
                self._output_size, 2, 'output_size'
            )
2269
        elif isinstance(self._output_size, Variable):
2270 2271 2272 2273 2274 2275
            check_dtype(
                self._output_size.dtype,
                'output_size',
                ['int32', 'int64'],
                'Conv2DTranspose',
            )
2276
            if len(self._output_size.shape) == 1 and (
2277 2278 2279
                self._output_size.shape[0] == 1
                or self._output_size.shape[0] == 2
            ):
2280 2281 2282 2283
                if self._output_size.shape[0] == 1:
                    self._output_size = [self._output_size, self._output_size]
            else:
                raise ValueError(
2284 2285
                    "output_size must contain one or two integers."
                )
2286
        else:
2287
            raise ValueError("output_size should be list or int or Tensor")
2288 2289
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2290 2291 2292 2293
        filter_shape = [
            self._num_channels,
            self._num_filters // self._groups,
        ] + self._filter_size
2294

2295 2296 2297
        self.weight = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr
        )
2298

2299 2300 2301 2302 2303 2304
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
2305

2306
    def forward(self, input):
J
Jiabin Yang 已提交
2307
        if _non_static_mode():
2308
            op = getattr(_legacy_C_ops, self._op_type)
2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
            out = op(
                input,
                self.weight,
                'output_size',
                self._output_size,
                'strides',
                self._stride,
                'paddings',
                self._padding,
                'dilations',
                self._dilation,
                'groups',
                self._groups,
                'use_cudnn',
                self._use_cudnn,
            )
2325
            pre_bias = out
2326
            pre_act = dygraph_utils._append_bias_in_dygraph(
2327 2328 2329 2330 2331
                pre_bias, self.bias, 1
            )
            return dygraph_utils._append_activation_in_dygraph(
                pre_act, act=self._act
            )
2332

2333 2334 2335
        check_variable_and_dtype(
            input, 'input', ['float16', 'float32', 'float64'], "Conv2DTranspose"
        )
2336

2337 2338 2339 2340 2341 2342 2343
        inputs = {'Input': [input], 'Filter': [self.weight]}
        attrs = {
            'output_size': self._output_size,
            'strides': self._stride,
            'paddings': self._padding,
            'dilations': self._dilation,
            'groups': self._groups,
2344
            'use_cudnn': self._use_cudnn,
2345 2346
        }

2347
        pre_bias = self._helper.create_variable_for_type_inference(
2348 2349 2350 2351 2352 2353 2354 2355
            dtype=input.dtype
        )
        self._helper.append_op(
            type=self._op_type,
            inputs=inputs,
            outputs={'Output': pre_bias},
            attrs=attrs,
        )
2356

2357
        if self.bias is not None:
2358
            pre_act = self._helper.create_variable_for_type_inference(
2359 2360 2361 2362 2363 2364 2365 2366
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
2367 2368 2369 2370
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2371 2372 2373 2374 2375 2376 2377 2378 2379
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2380
    Parameters:
L
lujun 已提交
2381
        name_scope(str): The name of this class.
2382
        num_filters (int): number of filters.
L
lujun 已提交
2383 2384 2385
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2398 2399 2400 2401
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2402 2403 2404 2405
    Returns:
        Variable: output of sequence_conv
    """

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
    def __init__(
        self,
        name_scope,
        num_filters,
        filter_size=3,
        filter_stride=1,
        padding=None,
        bias_attr=None,
        param_attr=None,
        act=None,
    ):
        assert (
            not _non_static_mode()
2419
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2420
        super().__init__(name_scope)
2421 2422 2423 2424 2425 2426
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2427
        self._act = act
2428

2429
    def _build_once(self, input):
2430 2431
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
2432 2433 2434
        self.weight = self.create_parameter(
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype
        )
2435

2436 2437 2438 2439 2440 2441
        self.bias = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True,
        )
2442

2443 2444
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self.weight],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size,
            },
        )
2458

2459
        if self.bias is not None:
2460
            pre_act = self._helper.create_variable_for_type_inference(
2461 2462 2463 2464 2465 2466 2467 2468
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias], 'Y': [self.bias]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1},
            )
2469 2470 2471 2472
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2473 2474 2475


class RowConv(layers.Layer):
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2494
    Parameters:
L
lujun 已提交
2495
        name_scope(str): The name of this class.
2496 2497 2498
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2499 2500
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2501

2502 2503 2504
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2505
    Returns:
L
lujun 已提交
2506 2507
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

2523 2524 2525 2526 2527
    def __init__(
        self, name_scope, future_context_size, param_attr=None, act=None
    ):
        assert (
            not _non_static_mode()
2528
        ), "RowConv is not supported by dynamic graph mode yet!"
2529
        super().__init__(name_scope)
L
lujun 已提交
2530 2531 2532 2533
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2534
    def _build_once(self, input):
L
lujun 已提交
2535 2536
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2537 2538 2539 2540 2541 2542
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
2543 2544 2545

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
2546 2547 2548 2549 2550
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input], 'Filter': [self.weight]},
            outputs={'Out': [out]},
        )
L
lujun 已提交
2551 2552 2553 2554 2555
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2556
    :alias_main: paddle.nn.GroupNorm
2557 2558
        :alias: paddle.nn.GroupNorm,paddle.nn.layer.GroupNorm,paddle.nn.layer.norm.GroupNorm
        :old_api: paddle.fluid.dygraph.GroupNorm
2559

2560 2561 2562 2563 2564 2565
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2566
        channels(int): The number of channels of input.
2567 2568 2569 2570 2571 2572 2573 2574 2575
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
T
tianshuo78520a 已提交
2576
        act(str, optional): Activation to be applied to the output of group normalization. Default: None.
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2590
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2591
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2592 2593 2594

    """

2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
    def __init__(
        self,
        channels,
        groups,
        epsilon=1e-05,
        param_attr=None,
        bias_attr=None,
        act=None,
        data_layout='NCHW',
        dtype='float32',
    ):
2606
        super().__init__()
L
lujun 已提交
2607 2608 2609
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2610
        self._channels = channels
L
lujun 已提交
2611 2612
        self._groups = groups
        self._act = act
2613
        self._dtype = dtype
L
lujun 已提交
2614 2615 2616
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2617
        param_shape = [self._channels]
L
lujun 已提交
2618

2619 2620 2621 2622 2623 2624
        self.weight = self.create_parameter(
            attr=self._param_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0),
        )
2625

2626 2627 2628 2629 2630 2631
        self.bias = self.create_parameter(
            attr=self._bias_attr or False,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True,
        )
L
lujun 已提交
2632 2633

    def forward(self, input):
2634
        mean_out = self._helper.create_variable_for_type_inference(
2635 2636
            dtype=self._dtype, stop_gradient=True
        )
2637
        variance_out = self._helper.create_variable_for_type_inference(
2638 2639
            dtype=self._dtype, stop_gradient=True
        )
2640
        if in_dygraph_mode():
2641 2642 2643 2644 2645 2646 2647 2648
            out = _C_ops.group_norm(
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._groups,
                "NCHW",
            )
2649

2650 2651 2652
            return dygraph_utils._append_activation_in_dygraph(out, self._act)

        elif _in_legacy_dygraph():
2653
            attrs = ('epsilon', self._epsilon, 'groups', self._groups)
2654 2655 2656
            out, _, _ = _legacy_C_ops.group_norm(
                input, self.weight, self.bias, mean_out, variance_out, *attrs
            )
2657 2658

            return dygraph_utils._append_activation_in_dygraph(out, self._act)
J
Jiabin Yang 已提交
2659 2660 2661 2662 2663 2664 2665 2666 2667
        else:
            inputs = {'X': input}
            if self.bias is not None:
                inputs['Bias'] = self.bias
            if self.weight is not None:
                inputs['Scale'] = self.weight

            # create output
            group_norm_out = self._helper.create_variable_for_type_inference(
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
                dtype=self._dtype
            )

            self._helper.append_op(
                type="group_norm",
                inputs=inputs,
                outputs={
                    "Y": group_norm_out,
                    "Mean": mean_out,
                    "Variance": variance_out,
                },
                attrs={"epsilon": self._epsilon, "groups": self._groups},
            )
J
Jiabin Yang 已提交
2681 2682

            return self._helper.append_activation(group_norm_out, self._act)
L
lujun 已提交
2683 2684 2685


class SpectralNorm(layers.Layer):
2686
    r"""
2687 2688
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
T
tianshuo78520a 已提交
2699
    :attr:`power_iters` should be a positive integer, do following
2700 2701 2702 2703
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

2704
        \mathbf{v} := \frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}
2705

2706
        \mathbf{u} := \frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}
2707 2708 2709 2710 2711 2712 2713 2714

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

2715
        \mathbf{W} = \frac{\mathbf{W}}{\sigma(\mathbf{W})}
2716 2717 2718 2719


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2720
    Parameters:
2721
        weight_shape(list or tuple): The shape of weight parameter.
2722 2723 2724 2725
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2726
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2727 2728

    Returns:
2729
        None
2730 2731 2732 2733

    Examples:
       .. code-block:: python

C
Chen Long 已提交
2734 2735
            import paddle
            x = paddle.rand((2,8,32,32))
2736

C
Chen Long 已提交
2737 2738 2739 2740
            spectral_norm = paddle.nn.SpectralNorm(x.shape, dim=1, power_iters=2)
            spectral_norm_out = spectral_norm(x)

            print(spectral_norm_out.shape) # [2, 8, 32, 32]
2741 2742 2743

    """

2744 2745 2746
    def __init__(
        self, weight_shape, dim=0, power_iters=1, eps=1e-12, dtype='float32'
    ):
2747
        super().__init__()
L
lujun 已提交
2748 2749 2750
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2751
        self._dtype = dtype
L
lujun 已提交
2752

2753
        self._weight_shape = list(weight_shape)
2754 2755 2756 2757 2758
        assert (
            np.prod(self._weight_shape) > 0
        ), "Any dimension of `weight_shape` cannot be equal to 0."
        assert dim < len(self._weight_shape), (
            "The input `dim` should be less than the "
2759
            "length of `weight_shape`, but received dim="
2760 2761
            "{}".format(dim)
        )
2762 2763
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2764

2765 2766 2767 2768 2769 2770
        self.weight_u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
2771
        self.weight_u.stop_gradient = True
L
lujun 已提交
2772

2773 2774 2775 2776 2777 2778
        self.weight_v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0.0, 1.0),
        )
2779
        self.weight_v.stop_gradient = True
L
lujun 已提交
2780 2781

    def forward(self, weight):
2782
        if in_dygraph_mode():
2783 2784 2785 2786 2787 2788 2789 2790
            return _C_ops.spectral_norm(
                weight,
                self.weight_u,
                self.weight_v,
                self._dim,
                self._power_iters,
                self._eps,
            )
2791

2792 2793 2794
        check_variable_and_dtype(
            weight, "weight", ['float32', 'float64'], 'SpectralNorm'
        )
2795
        inputs = {'Weight': weight, 'U': self.weight_u, 'V': self.weight_v}
L
lujun 已提交
2796
        out = self._helper.create_variable_for_type_inference(self._dtype)
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={
                "Out": out,
            },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            },
        )
L
lujun 已提交
2809 2810 2811 2812 2813

        return out


class TreeConv(layers.Layer):
2814
    """
2815 2816 2817 2818 2819 2820 2821 2822
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
2823

2824
    Parameters:
2825
        feature_size(int): last dimension of nodes_vector.
2826 2827 2828 2829 2830 2831 2832
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2833
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2834

2835 2836
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2837

2838
        **bias** (Parameter or None): the learnable bias of this layer.
2839

2840 2841
    Returns:
        None
L
lujun 已提交
2842

2843
    Examples:
L
lujun 已提交
2844

2845
        .. code-block:: python
2846

2847 2848
          import paddle.fluid as fluid
          import numpy
2849

2850 2851 2852 2853
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
2854
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
2855
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
2856 2857
    """

2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
    def __init__(
        self,
        feature_size,
        output_size,
        num_filters=1,
        max_depth=2,
        act='tanh',
        param_attr=None,
        bias_attr=None,
        name=None,
        dtype='float32',
    ):
2870
        super().__init__()
L
lujun 已提交
2871
        self._name = name
2872
        self._feature_size = feature_size
L
lujun 已提交
2873 2874 2875 2876 2877 2878
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2879 2880
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
2881
        if self._bias_attr:
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True,
            )
        self.weight = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False,
        )
L
lujun 已提交
2894 2895

    def forward(self, nodes_vector, edge_set):
2896 2897
        check_type(nodes_vector, 'nodes_vector', (Variable), 'TreeConv')
        check_type(edge_set, 'edge_set', (Variable), 'TreeConv')
L
lujun 已提交
2898
        if self._name:
2899 2900 2901
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False
            )
L
lujun 已提交
2902 2903
        else:
            out = self._helper.create_variable_for_type_inference(
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
                dtype=self._dtype
            )
        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.weight,
            },
            outputs={
                'Out': out,
            },
            attrs={'max_depth': self._max_depth},
        )
L
lujun 已提交
2918 2919
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
2920 2921 2922 2923 2924 2925 2926 2927
                dtype=self._dtype
            )
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out], 'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1},
            )
L
lujun 已提交
2928 2929 2930
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941


class Flatten(layers.Layer):
    """
    This interface is used to construct a callable object of the ``FLatten`` class.
    For more details, refer to code examples.
    It implements flatten a contiguous range of dims into a tensor.

    Parameters:
        start_axis(int): first dim to flatten (default = 1)
        stop_axis(int): last dim to flatten (default = -1).
2942

2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle
          import numpy as np

          inp_np = np.ones([5, 2, 3, 4]).astype('float32')
Z
Zhou Wei 已提交
2954
          inp_np = paddle.to_tensor(inp_np)
2955 2956 2957 2958 2959 2960
          flatten = paddle.nn.Flatten(start_axis=1, stop_axis=2)
          flatten_res = flatten(inp_np)

    """

    def __init__(self, start_axis=1, stop_axis=-1):
2961
        super().__init__()
2962 2963 2964 2965
        self.start_axis = start_axis
        self.stop_axis = stop_axis

    def forward(self, input):
2966 2967 2968
        out = paddle.tensor.manipulation.flatten(
            input, start_axis=self.start_axis, stop_axis=self.stop_axis
        )
2969
        return out