test_communicator_geo.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17 18
import os
import sys
19
import time
20
import threading
21 22
import subprocess
import unittest
23
import numpy
24

25
import paddle
26 27
import paddle.fluid as fluid

28
import paddle.distributed.fleet.base.role_maker as role_maker
29
import paddle.distributed.fleet as fleet
30

T
tangwei12 已提交
31 32
from paddle.distributed.utils import find_free_ports

P
pangyoki 已提交
33 34
paddle.enable_static()

35

36
class TestCommunicatorGeoEnd2End(unittest.TestCase):
37 38
    def net(self):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
39 40 41 42 43 44 45 46 47 48 49 50 51
        x1 = fluid.layers.data(name='x1', shape=[1], dtype='int64', lod_level=1)

        emb = fluid.layers.embedding(
            input=x1,
            size=[10000, 10],
            param_attr=fluid.ParamAttr(
                name="embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)

        pool = fluid.layers.sequence_pool(input=emb, pool_type="sum")
        z = fluid.layers.concat(input=[x, pool], axis=1)
        y_predict = fluid.layers.fc(input=z, size=1, act=None)
52 53 54 55
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')

        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
56
        return avg_cost, x, x1, y
57

58 59 60 61
    def fake_reader(self):
        def reader():
            for i in range(10000):
                x = numpy.random.random((1, 13)).astype('float32')
62
                z = numpy.random.randint(0, 9999, (1, 1)).astype('int64')
63
                y = numpy.random.randint(0, 2, (1, 1)).astype('int64')
64
                yield x, z, y
65

66
        return reader
67

68 69
    def run_pserver(self, role, strategy):
        fleet.init(role)
70
        avg_cost, x, z, y = self.net()
71
        optimizer = fluid.optimizer.SGD(0.01)
72 73
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)
74

75 76 77 78 79 80 81 82
        fleet.init_server()
        fleet.run_server()

    def run_trainer(self, role, strategy):
        place = fluid.core.CPUPlace()
        exe = fluid.Executor(place)

        fleet.init(role)
83
        avg_cost, x, z, y = self.net()
84
        optimizer = fluid.optimizer.SGD(0.01)
85 86 87
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

88
        exe.run(fluid.default_startup_program())
T
tangwei12 已提交
89
        fleet.init_worker()
90 91

        train_reader = paddle.batch(self.fake_reader(), batch_size=24)
92
        feeder = fluid.DataFeeder(place=place, feed_list=[x, z, y])
93 94

        for batch_id, data in enumerate(train_reader()):
95 96 97
            exe.run(fluid.default_main_program(),
                    feed=feeder.feed(data),
                    fetch_list=[])
98

99
        fleet.stop_worker()
100

101 102 103
    def run_ut(self):
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")

104 105 106 107
        os.environ["PADDLE_PSERVER_NUMS"] = "1"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
T
tangwei12 已提交
108
        os.environ["POD_IP"] = "127.0.0.1"
109

110 111
        role = role_maker.PaddleCloudRoleMaker()

112
        strategy = paddle.distributed.fleet.DistributedStrategy()
113 114
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": 100}
C
Chengmo 已提交
115
        strategy.a_sync_configs = {"launch_barrier": False}
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

        if training_role == "TRAINER":
            self.run_trainer(role, strategy)
        else:
            self.run_pserver(role, strategy)

    def test_communicator(self):
        run_server_cmd = """
from __future__ import print_function

import sys
import os

import time
import threading
import subprocess
import unittest
import numpy

import paddle
import paddle.fluid as fluid

from paddle.fluid.communicator import Communicator
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
141
import paddle.distributed.fleet as fleet
142 143 144

from test_communicator_geo import TestCommunicatorGeoEnd2End

P
pangyoki 已提交
145
paddle.enable_static()
146 147 148 149 150 151 152 153 154 155 156 157 158 159

class RunServer(TestCommunicatorGeoEnd2End):
    def runTest(self):
        pass

os.environ["TRAINING_ROLE"] = "PSERVER"

half_run_server = RunServer()
half_run_server.run_ut()
"""

        server_file = "run_server_for_communicator_geo.py"
        with open(server_file, "w") as wb:
            wb.write(run_server_cmd)
T
tangwei12 已提交
160 161 162

        port = find_free_ports(1).pop()

163
        os.environ["TRAINING_ROLE"] = "PSERVER"
T
tangwei12 已提交
164 165
        os.environ["PADDLE_PORT"] = str(port)
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:{}".format(port)
166 167 168 169

        _python = sys.executable

        ps_cmd = "{} {}".format(_python, server_file)
T
tangwei12 已提交
170

171 172 173 174 175
        ps_proc = subprocess.Popen(
            ps_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE)

T
tangwei12 已提交
176
        time.sleep(5)
177

178
        os.environ["TRAINING_ROLE"] = "TRAINER"
179

180 181
        self.run_ut()
        ps_proc.kill()
T
tangwei12 已提交
182
        ps_proc.wait()
T
tangwei12 已提交
183
        outs, errs = ps_proc.communicate()
184

185 186
        if os.path.exists(server_file):
            os.remove(server_file)
187

188 189 190

if __name__ == '__main__':
    unittest.main()