test_communicator_geo.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17 18
import os
import sys
19
import time
20
import threading
21 22
import subprocess
import unittest
23
import numpy
24

25
import paddle
26 27
import paddle.fluid as fluid

28
import paddle.distributed.fleet.base.role_maker as role_maker
29
import paddle.distributed.fleet as fleet
30

31

32
class TestCommunicatorGeoEnd2End(unittest.TestCase):
33 34
    def net(self):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
35 36 37 38 39 40 41 42 43 44 45 46 47
        x1 = fluid.layers.data(name='x1', shape=[1], dtype='int64', lod_level=1)

        emb = fluid.layers.embedding(
            input=x1,
            size=[10000, 10],
            param_attr=fluid.ParamAttr(
                name="embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)

        pool = fluid.layers.sequence_pool(input=emb, pool_type="sum")
        z = fluid.layers.concat(input=[x, pool], axis=1)
        y_predict = fluid.layers.fc(input=z, size=1, act=None)
48 49 50 51
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')

        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
52
        return avg_cost, x, x1, y
53

54 55 56 57
    def fake_reader(self):
        def reader():
            for i in range(10000):
                x = numpy.random.random((1, 13)).astype('float32')
58
                z = numpy.random.randint(0, 9999, (1, 1)).astype('int64')
59
                y = numpy.random.randint(0, 2, (1, 1)).astype('int64')
60
                yield x, z, y
61

62
        return reader
63

64 65
    def run_pserver(self, role, strategy):
        fleet.init(role)
66
        avg_cost, x, z, y = self.net()
67
        optimizer = fluid.optimizer.SGD(0.01)
68 69
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)
70

71 72 73 74 75 76 77 78
        fleet.init_server()
        fleet.run_server()

    def run_trainer(self, role, strategy):
        place = fluid.core.CPUPlace()
        exe = fluid.Executor(place)

        fleet.init(role)
79
        avg_cost, x, z, y = self.net()
80
        optimizer = fluid.optimizer.SGD(0.01)
81 82 83
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

84
        fleet.init_worker()
85
        exe.run(fluid.default_startup_program())
86 87

        train_reader = paddle.batch(self.fake_reader(), batch_size=24)
88
        feeder = fluid.DataFeeder(place=place, feed_list=[x, z, y])
89 90

        for batch_id, data in enumerate(train_reader()):
91 92 93
            exe.run(fluid.default_main_program(),
                    feed=feeder.feed(data),
                    fetch_list=[])
94

95
        fleet.stop_worker()
96

97 98 99
    def run_ut(self):
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")

100 101 102 103 104 105 106 107
        os.environ["PADDLE_PSERVER_NUMS"] = "1"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_PORT"] = "36001"
        os.environ["PADDLE_TRAINER_ID"] = "0"
        os.environ["PADDLE_TRAINERS_NUM"] = "1"
        os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
            "127.0.0.1:36001"
108

109 110
        role = role_maker.PaddleCloudRoleMaker()

111
        strategy = paddle.distributed.fleet.DistributedStrategy()
112 113
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": 100}
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

        if training_role == "TRAINER":
            self.run_trainer(role, strategy)
        else:
            self.run_pserver(role, strategy)

    def test_communicator(self):
        run_server_cmd = """
from __future__ import print_function

import sys
import os

import time
import threading
import subprocess
import unittest
import numpy

import paddle
import paddle.fluid as fluid

from paddle.fluid.communicator import Communicator
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
139
import paddle.distributed.fleet as fleet
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

from test_communicator_geo import TestCommunicatorGeoEnd2End


class RunServer(TestCommunicatorGeoEnd2End):
    def runTest(self):
        pass

os.environ["TRAINING_ROLE"] = "PSERVER"
os.environ["http_proxy"] = ""
os.environ["https_proxy"] = ""

half_run_server = RunServer()
half_run_server.run_ut()
"""

        server_file = "run_server_for_communicator_geo.py"
        with open(server_file, "w") as wb:
            wb.write(run_server_cmd)
        os.environ["TRAINING_ROLE"] = "PSERVER"
        os.environ["http_proxy"] = ""
        os.environ["https_proxy"] = ""

        _python = sys.executable

        ps_cmd = "{} {}".format(_python, server_file)
        ps_proc = subprocess.Popen(
            ps_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE)

        time.sleep(5)
172

173 174 175
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["http_proxy"] = ""
        os.environ["https_proxy"] = ""
176

177 178
        self.run_ut()
        ps_proc.kill()
179

180 181
        if os.path.exists(server_file):
            os.remove(server_file)
182

183 184 185

if __name__ == '__main__':
    unittest.main()