test_communicator_geo.py 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17 18
import os
import sys
19
import time
20
import threading
21 22
import subprocess
import unittest
23
import numpy
24

25
import paddle
26 27
import paddle.fluid as fluid

28 29
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
30
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
31

32

33
class TestCommunicatorGeoEnd2End(unittest.TestCase):
34 35 36 37 38 39 40
    def net(self):
        x = fluid.layers.data(name='x', shape=[13], dtype='float32')
        y_predict = fluid.layers.fc(input=x, size=1, act=None)
        y = fluid.layers.data(name='y', shape=[1], dtype='float32')

        cost = fluid.layers.square_error_cost(input=y_predict, label=y)
        avg_cost = fluid.layers.mean(cost)
41
        return avg_cost, x, y
42

43 44 45 46 47 48
    def fake_reader(self):
        def reader():
            for i in range(10000):
                x = numpy.random.random((1, 13)).astype('float32')
                y = numpy.random.randint(0, 2, (1, 1)).astype('int64')
                yield x, y
49

50
        return reader
51

52 53 54
    def run_pserver(self, role, strategy):
        fleet.init(role)
        avg_cost, x, y = self.net()
55
        optimizer = fluid.optimizer.SGD(0.01)
56 57
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)
58

59 60 61 62 63 64 65 66 67 68
        fleet.init_server()
        fleet.run_server()

    def run_trainer(self, role, strategy):
        place = fluid.core.CPUPlace()
        exe = fluid.Executor(place)

        fleet.init(role)
        avg_cost, x, y = self.net()
        optimizer = fluid.optimizer.SGD(0.01)
69 70 71
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(avg_cost)

72
        fleet.init_worker()
73 74 75 76 77 78 79 80
        exe.run(fleet.startup_program)

        train_reader = paddle.batch(self.fake_reader(), batch_size=24)
        feeder = fluid.DataFeeder(place=place, feed_list=[x, y])

        for batch_id, data in enumerate(train_reader()):
            exe.run(fleet.main_program, feed=feeder.feed(data), fetch_list=[])

81
        fleet.stop_worker()
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    def run_ut(self):
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")

        role = role_maker.UserDefinedRoleMaker(
            current_id=0,
            role=role_maker.Role.WORKER
            if training_role == "TRAINER" else role_maker.Role.SERVER,
            worker_num=1,
            server_endpoints=["127.0.0.1:18099"])

        strategy = StrategyFactory.create_geo_strategy(10)

        if training_role == "TRAINER":
            self.run_trainer(role, strategy)
        else:
            self.run_pserver(role, strategy)

    def test_communicator(self):
        run_server_cmd = """
from __future__ import print_function

import sys
import os

import time
import threading
import subprocess
import unittest
import numpy

import paddle
import paddle.fluid as fluid

from paddle.fluid.communicator import Communicator
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from paddle.fluid.incubate.fleet.parameter_server.mode import DistributedMode
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

from test_communicator_geo import TestCommunicatorGeoEnd2End


class RunServer(TestCommunicatorGeoEnd2End):
    def runTest(self):
        pass

os.environ["TRAINING_ROLE"] = "PSERVER"
os.environ["http_proxy"] = ""
os.environ["https_proxy"] = ""

half_run_server = RunServer()
half_run_server.run_ut()
"""

        server_file = "run_server_for_communicator_geo.py"
        with open(server_file, "w") as wb:
            wb.write(run_server_cmd)
        os.environ["TRAINING_ROLE"] = "PSERVER"
        os.environ["http_proxy"] = ""
        os.environ["https_proxy"] = ""

        _python = sys.executable

        ps_cmd = "{} {}".format(_python, server_file)
        ps_proc = subprocess.Popen(
            ps_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE)

        time.sleep(5)
153

154 155 156
        os.environ["TRAINING_ROLE"] = "TRAINER"
        os.environ["http_proxy"] = ""
        os.environ["https_proxy"] = ""
157

158 159
        self.run_ut()
        ps_proc.kill()
160

161 162
        if os.path.exists(server_file):
            os.remove(server_file)
163

164 165 166

if __name__ == '__main__':
    unittest.main()