conv_cudnn_helper.h 31.1 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Z
zyfncg 已提交
17
#include "paddle/fluid/framework/eigen.h"
18
#include "paddle/fluid/operators/conv_base_helper.h"
19
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
20
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
21 22
#include "paddle/fluid/platform/profiler.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
23
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
24

Q
qingqing01 已提交
25 26 27
namespace paddle {
namespace operators {

28
using ConvArgs = ConvArgsBase<cudnnHandle_t, cudnnDataType_t>;
29 30

template <typename DeviceContext, typename T, size_t D>
H
hong 已提交
31
static void RemovePaddingSlice(const phi::GPUContext& context,
32 33
                               const Tensor* input,
                               Tensor* out,
34 35
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
H
hong 已提交
36
  auto& place = *context.eigen_device();
37 38
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
39 40
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
41 42 43 44 45 46
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  for (size_t i = 0; i < axes.size(); ++i) {
47
    int start = starts[i];
48 49 50 51 52 53
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
54

55 56 57 58 59 60
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
61 62 63

  phi::funcs::EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(
      place, out_t, in_t, offsets, extents);
64 65
}

66 67
static inline double ToMegaBytes(size_t bytes) {
  return static_cast<double>(bytes) / (1 << 20);
68 69
}

70 71
static inline bool UseFixedWorkspace() {
  return FLAGS_conv_workspace_size_limit >= 0;
72 73
}

74 75
static size_t CalcWorkspaceLimitInBytes(bool use_fixed_workspace) {
  if (!use_fixed_workspace) {
76
    int device_id = platform::GetCurrentDeviceId();
77 78 79 80
    int64_t allocated =
        memory::DeviceMemoryStatCurrentValue("Allocated", device_id);
    int64_t reserved =
        memory::DeviceMemoryStatCurrentValue("Reserved", device_id);
81 82 83
    int64_t availble = platform::GpuAvailableMemToAlloc();
    VLOG(3) << "[memory] allocated=" << ToMegaBytes(allocated)
            << " MB, reserved=" << ToMegaBytes(reserved)
84 85
            << " MB, available_to_alloc=" << ToMegaBytes(availble) << " MB.";
    return std::max(availble, reserved - allocated);
86 87
  } else {
    return FLAGS_conv_workspace_size_limit * 1024 * 1024;
88 89 90
  }
}

91 92 93
template <typename PerfT>
std::string GetPerfResultString(std::string prefix,
                                const std::vector<PerfT>& perf_results,
94 95
                                int actual_algo_count,
                                size_t workspace_limit) {
96 97 98 99 100 101 102 103 104 105
  std::ostringstream out;
  out << prefix << " (workspace limit=" << ToMegaBytes(workspace_limit)
      << " MB):\n";
  for (int i = 0; i < actual_algo_count; ++i) {
    const auto& result = perf_results[i];
    auto math_type_str = (result.mathType == CUDNN_TENSOR_OP_MATH) ? "T" : "F";
    out << "  algo=" << result.algo << ": tensor_core=" << math_type_str
        << ", time=" << result.time
        << " ms, memory=" << ToMegaBytes(result.memory)
        << " MB, status=" << result.status << "\n";
106
  }
107 108
  return out.str();
}
109

110 111
// Choose an algorithm which has the minimize time cost and less memory.
// NOTE: perf_results is ordered by time.
112 113 114
template <typename PerfT, typename AlgoT>
void ChooseAlgoByWorkspace(const std::vector<PerfT>& perf_results,
                           size_t workspace_limit,
115 116
                           SearchResult<AlgoT>* search_result) {
  int best_algo_idx = -1;
117 118
  for (size_t i = 0; i < perf_results.size(); ++i) {
    auto result = perf_results[i];
119
    if (result.status == CUDNN_STATUS_SUCCESS &&
120
        result.memory < workspace_limit) {
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
      if (best_algo_idx == -1) {
        // The algorithm which has minimize time cost and need a workspace_size
        // fitting the workspace_limit constraint.
        best_algo_idx = i;
        // Each perf_results[i].time is set to be -1 in heuristic search.
        if (perf_results[best_algo_idx].time < 0) {
          break;
        }
      } else {
        float best_algo_time = perf_results[best_algo_idx].time;
        if ((result.time - best_algo_time) / best_algo_time < 0.01) {
          best_algo_idx = (result.memory < perf_results[best_algo_idx].memory)
                              ? i
                              : best_algo_idx;
          break;
        }
      }
138 139
    }
  }
140 141 142 143 144 145 146 147
  if (best_algo_idx != -1) {
    search_result->algo = perf_results[best_algo_idx].algo;
    search_result->time = perf_results[best_algo_idx].time;
    search_result->workspace_size = perf_results[best_algo_idx].memory;
  } else {
    VLOG(3) << "Can not find an algorithm that requires memory < "
            << ToMegaBytes(workspace_limit) << " MB";
  }
148 149
}

Y
Yiqun Liu 已提交
150 151
template <typename PerfT>
struct SearchAlgorithmBase {};
152

153 154 155 156
// cuDNN convolution forward algorithm searcher, consisted of three searching
// modes, namely: deterministic, heuristic and exhaustive_search mode.
// As well as one workspace size acquirsition function with respect to
// the chosen alogrithm.
Q
qingqing01 已提交
157
template <>
Y
Yiqun Liu 已提交
158
struct SearchAlgorithmBase<cudnnConvolutionFwdAlgoPerf_t> {
159 160
  using PerfT = cudnnConvolutionFwdAlgoPerf_t;
  using AlgoT = cudnnConvolutionFwdAlgo_t;
Y
Yiqun Liu 已提交
161 162
  constexpr static phi::autotune::AlgorithmType kAlgoType =
      phi::autotune::AlgorithmType::kConvForward;
Q
qingqing01 已提交
163

164 165
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionFwdAlgo_t algo) {
Q
qingqing01 已提交
166
    size_t workspace_size = 0;
167
    PADDLE_ENFORCE_GPU_SUCCESS(
168
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
169 170 171 172 173 174 175
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
176 177
    return workspace_size;
  }
178

Y
Yiqun Liu 已提交
179
 protected:
H
hong 已提交
180 181 182
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size = GetWorkspaceSize(args, static_cast<AlgoT>(1));
    return SearchResult<AlgoT>(static_cast<AlgoT>(1), -1.0, workspace_size);
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
  }

  // Heuristic search mode, calling the cudnnGetXxxAlgorithm.
  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
198 199 200 201 202 203 204 205
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            kNUM_CUDNN_FWD_ALGS,
            &actual_perf_count,
            perf_results.data()));
206 207 208 209 210
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
Y
Yiqun Liu 已提交
211 212 213 214
      VLOG(4) << GetPerfResultString<PerfT>("[Heuristic] FwdAlgo Perf result",
                                            perf_results,
                                            actual_perf_count,
                                            workspace_size_limit);
215
      // cudnnGetConvolutionForwardAlgorithm is removed in CUDNN-8
216 217
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
218 219 220 221 222 223 224
#else
      VLOG(3) << "Fallback to non-v7 method to find conv algorithm "
                 "becasue the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
225 226 227 228 229
              args.handle,
              args.idesc.desc(),
              args.wdesc.desc(),
              args.cdesc.desc(),
              args.odesc.desc(),
230
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
231 232
              workspace_size_limit,
              &(result.algo)));
233 234 235 236 237
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm(
238 239 240 241 242 243 244
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
            workspace_size_limit,
245 246
            &(result.algo)));
#endif
H
hong 已提交
247
    result.workspace_size = GetWorkspaceSize(args, result.algo);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(4) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
266 267 268 269 270 271 272 273 274 275 276 277 278
              args.handle,
              args.idesc.desc(),
              args.x->data<T>(),
              args.wdesc.desc(),
              args.w->data<T>(),
              args.cdesc.desc(),
              args.odesc.desc(),
              const_cast<T*>(args.o->data<T>()),
              kNUM_CUDNN_FWD_ALGS,
              &returned_algo_count,
              perf_results.data(),
              workspace_ptr,
              max_workspace_size));
279 280 281
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
282 283
    workspace_handle.RunFuncSync(
        cudnn_find_func, max_workspace_size, UseFixedWorkspace());
284 285

    VLOG(4) << GetPerfResultString<PerfT>(
286 287 288 289 290 291
        "[Exhaustive Search] FwdAlgo Perf result",
        perf_results,
        returned_algo_count,
        workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(
        perf_results, workspace_size_limit, &result);
292

H
hong 已提交
293
    result.workspace_size = GetWorkspaceSize(args, result.algo);
294 295 296 297 298
    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
299 300 301 302 303 304
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_FWD_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
305 306 307 308 309 310 311
                args.handle,
                args.idesc.desc(),
                args.wdesc.desc(),
                args.cdesc.desc(),
                args.odesc.desc(),
                static_cast<cudnnConvolutionFwdAlgo_t>(algo),
                &workspace_size);
312 313
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
314 315 316
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
317
      return max_workspace_size;
318 319 320 321
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
322 323
};

324 325 326 327 328 329
// cuDNN convolution backward data-algorithm searcher, consisting of three
// searching modes, namely: deterministic, heuristic, and exhaustive_search
// mode. Specially, there are 2 pattens of exhaustive search mode, one for
// HALF precision only, one for the rest.
// As well as one workspace size acquirsition function with
// respect to the chosen alogrithm.
Q
qingqing01 已提交
330
template <>
Y
Yiqun Liu 已提交
331
struct SearchAlgorithmBase<cudnnConvolutionBwdDataAlgoPerf_t> {
332 333
  using PerfT = cudnnConvolutionBwdDataAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdDataAlgo_t;
Y
Yiqun Liu 已提交
334 335
  constexpr static phi::autotune::AlgorithmType kAlgoType =
      phi::autotune::AlgorithmType::kConvBackwardData;
Q
qingqing01 已提交
336

337 338
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdDataAlgo_t algo) {
Q
qingqing01 已提交
339
    size_t workspace_size = 0;
340
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
341
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
342 343 344 345 346 347 348
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
349 350
    return workspace_size;
  }
351

Y
Yiqun Liu 已提交
352
 protected:
H
hong 已提交
353 354 355 356 357
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size =
        GetWorkspaceSize(args, CUDNN_CONVOLUTION_BWD_DATA_ALGO_1);
    return SearchResult<AlgoT>(
        CUDNN_CONVOLUTION_BWD_DATA_ALGO_1, -1.0, workspace_size);
358 359 360 361 362 363 364 365 366 367 368 369 370 371
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
372 373 374 375 376 377 378 379
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            kNUM_CUDNN_BWD_DATA_ALGS,
            &actual_perf_count,
            perf_results.data()));
380 381 382 383
    result.algo = perf_results[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
    int stride_dim = args.x->dims().size() - 2;
384 385
    bool blacklist = std::any_of(args.s.begin(),
                                 args.s.begin() + stride_dim,
386 387 388 389 390 391 392 393 394 395 396 397
                                 [=](int n) { return n != 1; });
    if (blacklist && (perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                      perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
      result.algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    }
#endif
    result.workspace_size = GetWorkspaceSize(args, result.algo);
    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardDataAlgorithm is removed in CUDNN-8
398 399
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
400 401 402 403 404 405 406
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
407 408 409 410 411
              args.handle,
              args.wdesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.idesc.desc(),
412
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
413 414
              workspace_size_limit,
              &(result.algo)));
415 416 417 418 419
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
420 421 422 423 424
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
425
            CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
426 427
            workspace_size_limit,
            &(result.algo)));
428
#endif
H
hong 已提交
429
    result.workspace_size = GetWorkspaceSize(args, result.algo);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardDataAlgorithmEx(
448 449 450 451 452 453 454 455 456 457 458 459 460
              args.handle,
              args.wdesc.desc(),
              args.w->data<T>(),
              args.odesc.desc(),
              args.o->data<T>(),
              args.cdesc.desc(),
              args.idesc.desc(),
              const_cast<T*>(args.x->data<T>()),
              kNUM_CUDNN_BWD_DATA_ALGS,
              &returned_algo_count,
              perf_results.data(),
              workspace_ptr,
              max_workspace_size));
461 462 463
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
464 465
    workspace_handle.RunFuncSync(
        cudnn_find_func, max_workspace_size, UseFixedWorkspace());
466 467

    VLOG(4) << GetPerfResultString<PerfT>(
468 469 470 471 472 473
        "[Exhaustive Search] BwdDataAlgo Perf result",
        perf_results,
        returned_algo_count,
        workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(
        perf_results, workspace_size_limit, &result);
474

H
hong 已提交
475
    result.workspace_size = GetWorkspaceSize(args, result.algo);
476 477 478 479 480
    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
481 482 483 484 485 486
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_DATA_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
487 488 489 490 491
                args.handle,
                args.wdesc.desc(),
                args.odesc.desc(),
                args.cdesc.desc(),
                args.idesc.desc(),
492 493
                static_cast<cudnnConvolutionBwdDataAlgo_t>(algo),
                &workspace_size);
494 495
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
496 497 498
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
499
      return max_workspace_size;
500 501 502 503
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
504 505
};

506 507 508 509
// cuDNN convution backward filter-algorithm searcher, consisted of three
// algorithm searching modes, namely: deterministic, heuristic, and
// exhaustive_search mode. As well as one workspace size acquirsition function
// with respect to the chosen alogrithm.
Q
qingqing01 已提交
510
template <>
Y
Yiqun Liu 已提交
511
struct SearchAlgorithmBase<cudnnConvolutionBwdFilterAlgoPerf_t> {
512 513
  using PerfT = cudnnConvolutionBwdFilterAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdFilterAlgo_t;
Y
Yiqun Liu 已提交
514 515
  constexpr static phi::autotune::AlgorithmType kAlgoType =
      phi::autotune::AlgorithmType::kConvBackwardFilter;
Q
qingqing01 已提交
516

517 518
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdFilterAlgo_t algo) {
519
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
520
    size_t workspace_size = 0;
521
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
522
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
523 524 525 526 527 528 529
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
530 531
    return workspace_size;
  }
532

Y
Yiqun Liu 已提交
533
 protected:
H
hong 已提交
534 535 536 537 538
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size =
        GetWorkspaceSize(args, CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1);
    return SearchResult<AlgoT>(
        CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, -1.0, workspace_size);
539 540 541 542 543 544 545 546 547 548 549 550 551 552
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
553 554 555 556 557 558 559 560
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            kNUM_CUDNN_BWD_FILTER_ALGS,
            &actual_perf_count,
            perf_results.data()));
561 562 563 564 565 566
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardFilterAlgorithm is removed in CUDNN-8
567 568
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
569 570 571 572 573 574 575
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
576 577 578 579 580
              args.handle,
              args.idesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.wdesc.desc(),
581
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
582 583
              workspace_size_limit,
              &(result.algo)));
584 585 586 587 588
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
589 590 591 592 593
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
594
            CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
595 596
            workspace_size_limit,
            &(result.algo)));
597 598
#endif

H
hong 已提交
599
    result.workspace_size = GetWorkspaceSize(args, result.algo);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    int returned_algo_count = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    auto workspace_handle = ctx.cudnn_workspace_handle();
    if (platform::CudnnDataType<T>::type != CUDNN_DATA_HALF) {
      size_t max_workspace_size =
          GetMaxWorkspaceSize(args, workspace_size_limit);
      VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
              << " MB";

      auto cudnn_find_func = [&](void* workspace_ptr) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithmEx(
621 622 623 624 625 626 627 628 629 630 631 632 633
                args.handle,
                args.idesc.desc(),
                args.x->data<T>(),
                args.odesc.desc(),
                args.o->data<T>(),
                args.cdesc.desc(),
                args.wdesc.desc(),
                const_cast<T*>(args.w->data<T>()),
                kNUM_CUDNN_BWD_FILTER_ALGS,
                &returned_algo_count,
                perf_results.data(),
                workspace_ptr,
                max_workspace_size));
634
      };
635 636
      workspace_handle.RunFuncSync(
          cudnn_find_func, max_workspace_size, UseFixedWorkspace());
637 638

      VLOG(4) << GetPerfResultString<PerfT>(
639 640 641 642 643 644
          "[Exhaustive Search] BwdFilterAlgo Perf result",
          perf_results,
          returned_algo_count,
          workspace_size_limit);
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
645 646 647 648 649
    } else {
      int max_algos = GetAlgorithmMaxCount(args.handle);
      std::vector<PerfT> perf_results(max_algos);
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithm(
650 651 652 653 654 655 656 657
              args.handle,
              args.idesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.wdesc.desc(),
              perf_results.size(),
              &returned_algo_count,
              perf_results.data()));
658 659 660
      perf_results.resize(returned_algo_count);

      VLOG(4) << GetPerfResultString<PerfT>(
661 662 663 664
          "[Exhaustive Search] BwdFilterAlgo Perf result",
          perf_results,
          perf_results.size(),
          workspace_size_limit);
665 666 667
      ChooseAlgo(perf_results, workspace_size_limit, &result);
    }

H
hong 已提交
668
    result.workspace_size = GetWorkspaceSize(args, result.algo);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    return result;
  }

  static int GetAlgorithmMaxCount(cudnnHandle_t handle) {
#if CUDNN_VERSION_MIN(7, 0, 1)
    int max_algos = 0;
    auto status =
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
            handle, &max_algos);
    if (status == gpuSuccess) {
      VLOG(5) << "[BackwardFilter] max_algos: predefined="
              << kNUM_CUDNN_BWD_FILTER_ALGS << ", actual=" << max_algos;
      return max_algos;
    }
#endif
    return kNUM_CUDNN_BWD_FILTER_ALGS;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
689 690 691 692 693 694
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_FILTER_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
695 696 697 698 699
                args.handle,
                args.idesc.desc(),
                args.odesc.desc(),
                args.cdesc.desc(),
                args.wdesc.desc(),
700 701
                static_cast<cudnnConvolutionBwdFilterAlgo_t>(algo),
                &workspace_size);
702 703
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
704 705 706
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
707
      return max_workspace_size;
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
    } else {
      return workspace_size_limit;
    }
  }

  static void ChooseAlgo(const std::vector<PerfT>& perf_results,
                         size_t workspace_limit,
                         SearchResult<AlgoT>* algo_result) {
    for (size_t i = 0; i != perf_results.size(); ++i) {
      const auto& result = perf_results[i];
      if (result.status == CUDNN_STATUS_SUCCESS &&
          (result.memory <= workspace_limit)) {
        if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
            (i != perf_results.size() - 1)) {
          const auto& next_result = perf_results[i + 1];
          if (next_result.status == CUDNN_STATUS_SUCCESS &&
              next_result.algo == result.algo &&
              next_result.memory == result.memory &&
              next_result.mathType != CUDNN_TENSOR_OP_MATH &&
              next_result.time < 1.01 * result.time) {
            // Skip over this result- it's not really a Tensor Core algo.
            // Because it is only 1% performance difference.
            // Prefer to choose the next equivalent non-Tensor Core algo.
            continue;
          }
        }
        algo_result->algo = result.algo;
        algo_result->time = result.time;
        auto math_type_str = "0";
        if (result.mathType == CUDNN_TENSOR_OP_MATH) {
          math_type_str = "1";
        }
        VLOG(3) << "    choose algo: " << result.algo
                << ", TC: " << math_type_str << ", time: " << result.time
                << " ms, wksp = " << result.memory
                << ", status = " << result.status;
        break;
      }
    }
  }
Q
qingqing01 已提交
748 749
};

Y
Yiqun Liu 已提交
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
template <typename PerfT>
struct SearchAlgorithm : public SearchAlgorithmBase<PerfT> {
  using AlgoT = typename SearchAlgorithmBase<PerfT>::AlgoT;

  template <typename T>
  static SearchResult<AlgoT> Find(const ConvArgs& args,
                                  bool exhaustive_search,
                                  bool deterministic,
                                  const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    auto dtype = platform::CudnnDataType<T>::type;
    SetConvMathType(ctx, dtype, args.cdesc);

    if (deterministic) {
      result = SearchAlgorithmBase<PerfT>::FindAlgoDeterministic(args);
    } else {
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, runn heuristic search(default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
      auto key = args.Convert2ConvCacheKey<T>();
      auto& cache = phi::autotune::AutoTuneCache::Instance().GetConv(
          SearchAlgorithmBase<PerfT>::kAlgoType);
      if (cache.Find(key)) {
        auto t = cache.Get(key);
        result.algo = static_cast<AlgoT>(t.algo);
        result.workspace_size = t.workspace_size;
      } else {
        bool use_autotune =
            phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          result =
              SearchAlgorithmBase<PerfT>::template FindAlgoExhaustiveSearch<T>(
                  args, ctx);
        } else {
          result = SearchAlgorithmBase<PerfT>::FindAlgoHeuristic(args, ctx);
        }
        phi::autotune::DnnNode node(static_cast<int64_t>(result.algo),
                                    result.workspace_size);
        cache.Set(key, node);
      }
    }
    VLOG(3) << "[cuDNN Convoltion] exhaustive_search=" << exhaustive_search
            << ", deterministic=" << deterministic
            << ", choose algo=" << result.algo
            << ", workspace=" << ToMegaBytes(result.workspace_size) << " MB";
    return result;
  }

  static void SetConvMathType(const phi::GPUContext& ctx,
                              cudnnDataType_t dtype,
                              const platform::ConvolutionDescriptor& cdesc) {
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    if (ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_TENSOR_OP_MATH));
      VLOG(5) << "Enable Tensor Core for FLOAT16";
#if CUDA_VERSION >= 11000
#if CUDNN_VERSION_MIN(8, 1, 0)
    } else if (ctx.GetComputeCapability() >= 80 &&
               dtype == CUDNN_DATA_BFLOAT16) {
      VLOG(5) << "Enable Tensor Core for BFLOAT16";
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_TENSOR_OP_MATH));
#endif  // CUDNN_VERSION_MIN(8, 1, 0)
    } else if (dtype == CUDNN_DATA_FLOAT && !cdesc.allow_tf32_) {
      VLOG(5) << "Disable TensorFloat (Tensor Core) for FLOAT";
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
    } else {
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_DEFAULT_MATH));
    }
#endif
  }
};

Q
qingqing01 已提交
829 830
}  // namespace operators
}  // namespace paddle