conv_cudnn_helper.h 32.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/operators/conv_base_helper.h"
18
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
20 21
#include "paddle/fluid/platform/profiler.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
22
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
23

Q
qingqing01 已提交
24 25 26
namespace paddle {
namespace operators {

27
using ConvArgs = ConvArgsBase<cudnnHandle_t, cudnnDataType_t>;
28 29

template <typename DeviceContext, typename T, size_t D>
H
hong 已提交
30
static void RemovePaddingSlice(const phi::GPUContext& context,
31 32
                               const Tensor* input,
                               Tensor* out,
33 34
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
H
hong 已提交
35
  auto& place = *context.eigen_device();
36 37
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
38 39
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
40 41 42 43 44 45
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  for (size_t i = 0; i < axes.size(); ++i) {
46
    int start = starts[i];
47 48 49 50 51 52
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
53

54 55 56 57 58 59
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
60 61 62

  phi::funcs::EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(
      place, out_t, in_t, offsets, extents);
63 64
}

65 66
static inline double ToMegaBytes(size_t bytes) {
  return static_cast<double>(bytes) / (1 << 20);
67 68
}

69 70
static inline bool UseFixedWorkspace() {
  return FLAGS_conv_workspace_size_limit >= 0;
71 72
}

73 74
static size_t CalcWorkspaceLimitInBytes(bool use_fixed_workspace) {
  if (!use_fixed_workspace) {
75
    int device_id = platform::GetCurrentDeviceId();
76 77 78 79
    int64_t allocated =
        memory::DeviceMemoryStatCurrentValue("Allocated", device_id);
    int64_t reserved =
        memory::DeviceMemoryStatCurrentValue("Reserved", device_id);
80 81 82
    int64_t availble = platform::GpuAvailableMemToAlloc();
    VLOG(3) << "[memory] allocated=" << ToMegaBytes(allocated)
            << " MB, reserved=" << ToMegaBytes(reserved)
83 84
            << " MB, available_to_alloc=" << ToMegaBytes(availble) << " MB.";
    return std::max(availble, reserved - allocated);
85 86
  } else {
    return FLAGS_conv_workspace_size_limit * 1024 * 1024;
87 88 89
  }
}

90 91 92
template <typename PerfT>
std::string GetPerfResultString(std::string prefix,
                                const std::vector<PerfT>& perf_results,
93 94
                                int actual_algo_count,
                                size_t workspace_limit) {
95 96 97 98 99 100 101 102 103 104
  std::ostringstream out;
  out << prefix << " (workspace limit=" << ToMegaBytes(workspace_limit)
      << " MB):\n";
  for (int i = 0; i < actual_algo_count; ++i) {
    const auto& result = perf_results[i];
    auto math_type_str = (result.mathType == CUDNN_TENSOR_OP_MATH) ? "T" : "F";
    out << "  algo=" << result.algo << ": tensor_core=" << math_type_str
        << ", time=" << result.time
        << " ms, memory=" << ToMegaBytes(result.memory)
        << " MB, status=" << result.status << "\n";
105
  }
106 107
  return out.str();
}
108

109 110
// Choose an algorithm which has the minimize time cost and less memory.
// NOTE: perf_results is ordered by time.
111 112 113
template <typename PerfT, typename AlgoT>
void ChooseAlgoByWorkspace(const std::vector<PerfT>& perf_results,
                           size_t workspace_limit,
114 115
                           SearchResult<AlgoT>* search_result) {
  int best_algo_idx = -1;
116 117
  for (size_t i = 0; i < perf_results.size(); ++i) {
    auto result = perf_results[i];
118
    if (result.status == CUDNN_STATUS_SUCCESS &&
119
        result.memory < workspace_limit) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
      if (best_algo_idx == -1) {
        // The algorithm which has minimize time cost and need a workspace_size
        // fitting the workspace_limit constraint.
        best_algo_idx = i;
        // Each perf_results[i].time is set to be -1 in heuristic search.
        if (perf_results[best_algo_idx].time < 0) {
          break;
        }
      } else {
        float best_algo_time = perf_results[best_algo_idx].time;
        if ((result.time - best_algo_time) / best_algo_time < 0.01) {
          best_algo_idx = (result.memory < perf_results[best_algo_idx].memory)
                              ? i
                              : best_algo_idx;
          break;
        }
      }
137 138
    }
  }
139 140 141 142 143 144 145 146
  if (best_algo_idx != -1) {
    search_result->algo = perf_results[best_algo_idx].algo;
    search_result->time = perf_results[best_algo_idx].time;
    search_result->workspace_size = perf_results[best_algo_idx].memory;
  } else {
    VLOG(3) << "Can not find an algorithm that requires memory < "
            << ToMegaBytes(workspace_limit) << " MB";
  }
147 148
}

149 150
static void SetConvMathType(const phi::GPUContext& ctx,
                            cudnnDataType_t dtype,
151 152
                            const platform::ConvolutionDescriptor& cdesc) {
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
153
  if (ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
154
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
155 156 157 158
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
    VLOG(5) << "use cudnn_tensor_op_math";
#if CUDA_VERSION >= 11000
#if CUDNN_VERSION_MIN(8, 1, 0)
159
  } else if (ctx.GetComputeCapability() >= 80 && dtype == CUDNN_DATA_BFLOAT16) {
160
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
161 162 163
        cdesc.desc(), CUDNN_TENSOR_OP_MATH));
#endif  // CUDNN_VERSION_MIN(8, 1, 0)
  } else if (dtype == CUDNN_DATA_FLOAT && !cdesc.allow_tf32_) {
164
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
165 166 167
        cdesc.desc(), CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
  } else {
168
    PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
169 170 171 172 173 174
        cdesc.desc(), CUDNN_DEFAULT_MATH));
    VLOG(5) << "NOT use cudnn_tensor_op_math";
  }
#endif
}

175 176 177 178
// cuDNN convolution forward algorithm searcher, consisted of three searching
// modes, namely: deterministic, heuristic and exhaustive_search mode.
// As well as one workspace size acquirsition function with respect to
// the chosen alogrithm.
Q
qingqing01 已提交
179 180
template <>
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
181 182
  using PerfT = cudnnConvolutionFwdAlgoPerf_t;
  using AlgoT = cudnnConvolutionFwdAlgo_t;
Q
qingqing01 已提交
183 184

  template <typename T>
185 186
  static SearchResult<AlgoT> Find(const ConvArgs& args,
                                  bool exhaustive_search,
187 188 189
                                  bool deterministic,
                                  const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
Q
qingqing01 已提交
190
    auto dtype = platform::CudnnDataType<T>::type;
191
    SetConvMathType(ctx, dtype, args.cdesc);
192

193 194
    if (deterministic) {
      result = FindAlgoDeterministic();
Q
qingqing01 已提交
195
    } else {
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, runn heuristic search(default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
      size_t key = args.GetCacheKey<T>();
      auto& cache = phi::autotune::AutoTuneCache::Instance().GetConvForward();
      if (cache.Find(key)) {
        result.algo = static_cast<AlgoT>(cache.Get(key));
      } else {
        bool use_autotune =
            phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          result = FindAlgoExhaustiveSearch<T>(args, ctx);
          cache.Set(key, static_cast<int64_t>(result.algo));
        } else {
          result = FindAlgoHeuristic(args, ctx);
        }
      }
Q
qingqing01 已提交
215
    }
216 217 218 219 220
    VLOG(3) << "[cuDNN Convoltion] exhaustive_search=" << exhaustive_search
            << ", deterministic=" << deterministic
            << ", choose algo=" << result.algo << ", workspace="
            << ToMegaBytes(GetWorkspaceSize(args, result.algo)) << " MB";
    return result;
Q
qingqing01 已提交
221 222
  }

223 224
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionFwdAlgo_t algo) {
Q
qingqing01 已提交
225
    size_t workspace_size = 0;
226
    PADDLE_ENFORCE_GPU_SUCCESS(
227
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
228 229 230 231 232 233 234
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
235 236
    return workspace_size;
  }
237 238

 private:
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  static SearchResult<AlgoT> FindAlgoDeterministic() {
    return SearchResult<AlgoT>(static_cast<AlgoT>(1));
  }

  // Heuristic search mode, calling the cudnnGetXxxAlgorithm.
  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
256 257 258 259 260 261 262 263
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            kNUM_CUDNN_FWD_ALGS,
            &actual_perf_count,
            perf_results.data()));
264 265 266 267 268 269
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionForwardAlgorithm is removed in CUDNN-8
270 271
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
272 273 274 275 276 277 278
#else
      VLOG(3) << "Fallback to non-v7 method to find conv algorithm "
                 "becasue the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
279 280 281 282 283
              args.handle,
              args.idesc.desc(),
              args.wdesc.desc(),
              args.cdesc.desc(),
              args.odesc.desc(),
284
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
285 286
              workspace_size_limit,
              &(result.algo)));
287 288 289 290 291
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm(
292 293 294 295 296 297 298
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
            workspace_size_limit,
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
            &(result.algo)));
#endif
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(4) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
319 320 321 322 323 324 325 326 327 328 329 330 331
              args.handle,
              args.idesc.desc(),
              args.x->data<T>(),
              args.wdesc.desc(),
              args.w->data<T>(),
              args.cdesc.desc(),
              args.odesc.desc(),
              const_cast<T*>(args.o->data<T>()),
              kNUM_CUDNN_FWD_ALGS,
              &returned_algo_count,
              perf_results.data(),
              workspace_ptr,
              max_workspace_size));
332 333 334
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
335 336
    workspace_handle.RunFuncSync(
        cudnn_find_func, max_workspace_size, UseFixedWorkspace());
337 338

    VLOG(4) << GetPerfResultString<PerfT>(
339 340 341 342 343 344
        "[Exhaustive Search] FwdAlgo Perf result",
        perf_results,
        returned_algo_count,
        workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(
        perf_results, workspace_size_limit, &result);
345 346 347 348 349 350

    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
351 352 353 354 355 356
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_FWD_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
357 358 359 360 361 362 363
                args.handle,
                args.idesc.desc(),
                args.wdesc.desc(),
                args.cdesc.desc(),
                args.odesc.desc(),
                static_cast<cudnnConvolutionFwdAlgo_t>(algo),
                &workspace_size);
364 365
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
366 367 368
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
369
      return max_workspace_size;
370 371 372 373
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
374 375
};

376 377 378 379 380 381
// cuDNN convolution backward data-algorithm searcher, consisting of three
// searching modes, namely: deterministic, heuristic, and exhaustive_search
// mode. Specially, there are 2 pattens of exhaustive search mode, one for
// HALF precision only, one for the rest.
// As well as one workspace size acquirsition function with
// respect to the chosen alogrithm.
Q
qingqing01 已提交
382 383
template <>
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
384 385
  using PerfT = cudnnConvolutionBwdDataAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdDataAlgo_t;
Q
qingqing01 已提交
386 387

  template <typename T>
388 389
  static SearchResult<AlgoT> Find(const ConvArgs& args,
                                  bool exhaustive_search,
390 391 392
                                  bool deterministic,
                                  const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
Q
qingqing01 已提交
393
    auto dtype = platform::CudnnDataType<T>::type;
394
    SetConvMathType(ctx, dtype, args.cdesc);
395

396 397
    if (deterministic) {
      result = FindAlgoDeterministic();
Q
qingqing01 已提交
398
    } else {
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, runn heuristic search(default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
      size_t key = args.GetCacheKey<T>();
      auto& cache =
          phi::autotune::AutoTuneCache::Instance().GetConvBackwardData();
      if (cache.Find(key)) {
        result.algo = static_cast<AlgoT>(cache.Get(key));
      } else {
        bool use_autotune =
            phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          result = FindAlgoExhaustiveSearch<T>(args, ctx);
          cache.Set(key, static_cast<int64_t>(result.algo));
        } else {
          result = FindAlgoHeuristic(args, ctx);
        }
      }
Q
qingqing01 已提交
419
    }
420 421 422 423 424
    VLOG(3) << "[cuDNN Convoltion] exhaustive_search=" << exhaustive_search
            << ", deterministic=" << deterministic
            << ", choose algo=" << result.algo << ", workspace="
            << ToMegaBytes(GetWorkspaceSize(args, result.algo)) << " MB";
    return result;
Q
qingqing01 已提交
425 426
  }

427 428
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdDataAlgo_t algo) {
Q
qingqing01 已提交
429
    size_t workspace_size = 0;
430
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
431
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
432 433 434 435 436 437 438
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
439 440
    return workspace_size;
  }
441 442

 private:
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
  static SearchResult<AlgoT> FindAlgoDeterministic() {
    return SearchResult<AlgoT>(CUDNN_CONVOLUTION_BWD_DATA_ALGO_1);
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
459 460 461 462 463 464 465 466
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            kNUM_CUDNN_BWD_DATA_ALGS,
            &actual_perf_count,
            perf_results.data()));
467 468 469 470
    result.algo = perf_results[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
    int stride_dim = args.x->dims().size() - 2;
471 472
    bool blacklist = std::any_of(args.s.begin(),
                                 args.s.begin() + stride_dim,
473 474 475 476 477 478 479 480 481 482 483 484
                                 [=](int n) { return n != 1; });
    if (blacklist && (perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                      perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
      result.algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    }
#endif
    result.workspace_size = GetWorkspaceSize(args, result.algo);
    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardDataAlgorithm is removed in CUDNN-8
485 486
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
487 488 489 490 491 492 493
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
494 495 496 497 498
              args.handle,
              args.wdesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.idesc.desc(),
499
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
500 501
              workspace_size_limit,
              &(result.algo)));
502 503 504 505 506
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
507 508 509 510 511
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
512
            CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
513 514
            workspace_size_limit,
            &(result.algo)));
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
#endif

    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardDataAlgorithmEx(
535 536 537 538 539 540 541 542 543 544 545 546 547
              args.handle,
              args.wdesc.desc(),
              args.w->data<T>(),
              args.odesc.desc(),
              args.o->data<T>(),
              args.cdesc.desc(),
              args.idesc.desc(),
              const_cast<T*>(args.x->data<T>()),
              kNUM_CUDNN_BWD_DATA_ALGS,
              &returned_algo_count,
              perf_results.data(),
              workspace_ptr,
              max_workspace_size));
548 549 550
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
551 552
    workspace_handle.RunFuncSync(
        cudnn_find_func, max_workspace_size, UseFixedWorkspace());
553 554

    VLOG(4) << GetPerfResultString<PerfT>(
555 556 557 558 559 560
        "[Exhaustive Search] BwdDataAlgo Perf result",
        perf_results,
        returned_algo_count,
        workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(
        perf_results, workspace_size_limit, &result);
561 562 563 564 565 566

    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
567 568 569 570 571 572
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_DATA_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
573 574 575 576 577
                args.handle,
                args.wdesc.desc(),
                args.odesc.desc(),
                args.cdesc.desc(),
                args.idesc.desc(),
578 579
                static_cast<cudnnConvolutionBwdDataAlgo_t>(algo),
                &workspace_size);
580 581
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
582 583 584
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
585
      return max_workspace_size;
586 587 588 589
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
590 591
};

592 593 594 595
// cuDNN convution backward filter-algorithm searcher, consisted of three
// algorithm searching modes, namely: deterministic, heuristic, and
// exhaustive_search mode. As well as one workspace size acquirsition function
// with respect to the chosen alogrithm.
Q
qingqing01 已提交
596 597
template <>
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
598 599
  using PerfT = cudnnConvolutionBwdFilterAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdFilterAlgo_t;
Q
qingqing01 已提交
600 601

  template <typename T>
602 603
  static SearchResult<AlgoT> Find(const ConvArgs& args,
                                  bool exhaustive_search,
604 605
                                  bool deterministic,
                                  const phi::GPUContext& ctx) {
606
    platform::CUDAGraphCaptureModeGuard guard;
607
    SearchResult<AlgoT> result;
Q
qingqing01 已提交
608
    auto dtype = platform::CudnnDataType<T>::type;
609
    SetConvMathType(ctx, dtype, args.cdesc);
Q
qingqing01 已提交
610

611 612
    if (deterministic) {
      result = FindAlgoDeterministic();
Q
qingqing01 已提交
613
    } else {
614 615 616 617 618 619 620 621 622 623
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, runn heuristic search(default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
      size_t key = args.GetCacheKey<T>();
      auto& cache =
          phi::autotune::AutoTuneCache::Instance().GetConvBackwardFilter();
      if (cache.Find(key)) {
        result.algo = static_cast<AlgoT>(cache.Get(key));
624
      } else {
625 626 627 628 629 630 631 632
        bool use_autotune =
            phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          result = FindAlgoExhaustiveSearch<T>(args, ctx);
          cache.Set(key, static_cast<int64_t>(result.algo));
        } else {
          result = FindAlgoHeuristic(args, ctx);
        }
633
      }
Q
qingqing01 已提交
634
    }
635 636 637 638 639
    VLOG(3) << "[cuDNN Convoltion] exhaustive_search=" << exhaustive_search
            << ", deterministic=" << deterministic
            << ", choose algo=" << result.algo << ", workspace="
            << ToMegaBytes(GetWorkspaceSize(args, result.algo)) << " MB";
    return result;
Q
qingqing01 已提交
640 641
  }

642 643
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdFilterAlgo_t algo) {
644
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
645
    size_t workspace_size = 0;
646
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
647
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
648 649 650 651 652 653 654
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
655 656
    return workspace_size;
  }
657 658

 private:
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
  static SearchResult<AlgoT> FindAlgoDeterministic() {
    return SearchResult<AlgoT>(CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1);
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
675 676 677 678 679 680 681 682
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            kNUM_CUDNN_BWD_FILTER_ALGS,
            &actual_perf_count,
            perf_results.data()));
683 684 685 686 687 688
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardFilterAlgorithm is removed in CUDNN-8
689 690
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
691 692 693 694 695 696 697
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
698 699 700 701 702
              args.handle,
              args.idesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.wdesc.desc(),
703
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
704 705
              workspace_size_limit,
              &(result.algo)));
706 707 708 709 710
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
711 712 713 714 715
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
716
            CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
717 718
            workspace_size_limit,
            &(result.algo)));
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
#endif

    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    int returned_algo_count = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    auto workspace_handle = ctx.cudnn_workspace_handle();
    if (platform::CudnnDataType<T>::type != CUDNN_DATA_HALF) {
      size_t max_workspace_size =
          GetMaxWorkspaceSize(args, workspace_size_limit);
      VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
              << " MB";

      auto cudnn_find_func = [&](void* workspace_ptr) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithmEx(
742 743 744 745 746 747 748 749 750 751 752 753 754
                args.handle,
                args.idesc.desc(),
                args.x->data<T>(),
                args.odesc.desc(),
                args.o->data<T>(),
                args.cdesc.desc(),
                args.wdesc.desc(),
                const_cast<T*>(args.w->data<T>()),
                kNUM_CUDNN_BWD_FILTER_ALGS,
                &returned_algo_count,
                perf_results.data(),
                workspace_ptr,
                max_workspace_size));
755
      };
756 757
      workspace_handle.RunFuncSync(
          cudnn_find_func, max_workspace_size, UseFixedWorkspace());
758 759

      VLOG(4) << GetPerfResultString<PerfT>(
760 761 762 763 764 765
          "[Exhaustive Search] BwdFilterAlgo Perf result",
          perf_results,
          returned_algo_count,
          workspace_size_limit);
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
766 767 768 769 770
    } else {
      int max_algos = GetAlgorithmMaxCount(args.handle);
      std::vector<PerfT> perf_results(max_algos);
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithm(
771 772 773 774 775 776 777 778
              args.handle,
              args.idesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.wdesc.desc(),
              perf_results.size(),
              &returned_algo_count,
              perf_results.data()));
779 780 781
      perf_results.resize(returned_algo_count);

      VLOG(4) << GetPerfResultString<PerfT>(
782 783 784 785
          "[Exhaustive Search] BwdFilterAlgo Perf result",
          perf_results,
          perf_results.size(),
          workspace_size_limit);
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
      ChooseAlgo(perf_results, workspace_size_limit, &result);
    }

    return result;
  }

  static int GetAlgorithmMaxCount(cudnnHandle_t handle) {
#if CUDNN_VERSION_MIN(7, 0, 1)
    int max_algos = 0;
    auto status =
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
            handle, &max_algos);
    if (status == gpuSuccess) {
      VLOG(5) << "[BackwardFilter] max_algos: predefined="
              << kNUM_CUDNN_BWD_FILTER_ALGS << ", actual=" << max_algos;
      return max_algos;
    }
#endif
    return kNUM_CUDNN_BWD_FILTER_ALGS;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
809 810 811 812 813 814
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_FILTER_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
815 816 817 818 819
                args.handle,
                args.idesc.desc(),
                args.odesc.desc(),
                args.cdesc.desc(),
                args.wdesc.desc(),
820 821
                static_cast<cudnnConvolutionBwdFilterAlgo_t>(algo),
                &workspace_size);
822 823
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
824 825 826
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
827
      return max_workspace_size;
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867
    } else {
      return workspace_size_limit;
    }
  }

  static void ChooseAlgo(const std::vector<PerfT>& perf_results,
                         size_t workspace_limit,
                         SearchResult<AlgoT>* algo_result) {
    for (size_t i = 0; i != perf_results.size(); ++i) {
      const auto& result = perf_results[i];
      if (result.status == CUDNN_STATUS_SUCCESS &&
          (result.memory <= workspace_limit)) {
        if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
            (i != perf_results.size() - 1)) {
          const auto& next_result = perf_results[i + 1];
          if (next_result.status == CUDNN_STATUS_SUCCESS &&
              next_result.algo == result.algo &&
              next_result.memory == result.memory &&
              next_result.mathType != CUDNN_TENSOR_OP_MATH &&
              next_result.time < 1.01 * result.time) {
            // Skip over this result- it's not really a Tensor Core algo.
            // Because it is only 1% performance difference.
            // Prefer to choose the next equivalent non-Tensor Core algo.
            continue;
          }
        }
        algo_result->algo = result.algo;
        algo_result->time = result.time;
        auto math_type_str = "0";
        if (result.mathType == CUDNN_TENSOR_OP_MATH) {
          math_type_str = "1";
        }
        VLOG(3) << "    choose algo: " << result.algo
                << ", TC: " << math_type_str << ", time: " << result.time
                << " ms, wksp = " << result.memory
                << ", status = " << result.status;
        break;
      }
    }
  }
Q
qingqing01 已提交
868 869 870 871
};

}  // namespace operators
}  // namespace paddle