conv_cudnn_helper.h 31.0 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/fluid/operators/conv_base_helper.h"
18
#include "paddle/fluid/platform/cuda_graph_with_memory_pool.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
20 21
#include "paddle/fluid/platform/profiler.h"
#include "paddle/phi/kernels/autotune/switch_autotune.h"
22
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
23

Q
qingqing01 已提交
24 25 26
namespace paddle {
namespace operators {

27
using ConvArgs = ConvArgsBase<cudnnHandle_t, cudnnDataType_t>;
28 29

template <typename DeviceContext, typename T, size_t D>
H
hong 已提交
30
static void RemovePaddingSlice(const phi::GPUContext& context,
31 32
                               const Tensor* input,
                               Tensor* out,
33 34
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
H
hong 已提交
35
  auto& place = *context.eigen_device();
36 37
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
38 39
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
40 41 42 43 44 45
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  for (size_t i = 0; i < axes.size(); ++i) {
46
    int start = starts[i];
47 48 49 50 51 52
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
53

54 55 56 57 58 59
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
60 61 62

  phi::funcs::EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(
      place, out_t, in_t, offsets, extents);
63 64
}

65 66
static inline double ToMegaBytes(size_t bytes) {
  return static_cast<double>(bytes) / (1 << 20);
67 68
}

69 70
static inline bool UseFixedWorkspace() {
  return FLAGS_conv_workspace_size_limit >= 0;
71 72
}

73 74
static size_t CalcWorkspaceLimitInBytes(bool use_fixed_workspace) {
  if (!use_fixed_workspace) {
75
    int device_id = platform::GetCurrentDeviceId();
76 77 78 79
    int64_t allocated =
        memory::DeviceMemoryStatCurrentValue("Allocated", device_id);
    int64_t reserved =
        memory::DeviceMemoryStatCurrentValue("Reserved", device_id);
80 81 82
    int64_t availble = platform::GpuAvailableMemToAlloc();
    VLOG(3) << "[memory] allocated=" << ToMegaBytes(allocated)
            << " MB, reserved=" << ToMegaBytes(reserved)
83 84
            << " MB, available_to_alloc=" << ToMegaBytes(availble) << " MB.";
    return std::max(availble, reserved - allocated);
85 86
  } else {
    return FLAGS_conv_workspace_size_limit * 1024 * 1024;
87 88 89
  }
}

90 91 92
template <typename PerfT>
std::string GetPerfResultString(std::string prefix,
                                const std::vector<PerfT>& perf_results,
93 94
                                int actual_algo_count,
                                size_t workspace_limit) {
95 96 97 98 99 100 101 102 103 104
  std::ostringstream out;
  out << prefix << " (workspace limit=" << ToMegaBytes(workspace_limit)
      << " MB):\n";
  for (int i = 0; i < actual_algo_count; ++i) {
    const auto& result = perf_results[i];
    auto math_type_str = (result.mathType == CUDNN_TENSOR_OP_MATH) ? "T" : "F";
    out << "  algo=" << result.algo << ": tensor_core=" << math_type_str
        << ", time=" << result.time
        << " ms, memory=" << ToMegaBytes(result.memory)
        << " MB, status=" << result.status << "\n";
105
  }
106 107
  return out.str();
}
108

109 110
// Choose an algorithm which has the minimize time cost and less memory.
// NOTE: perf_results is ordered by time.
111 112 113
template <typename PerfT, typename AlgoT>
void ChooseAlgoByWorkspace(const std::vector<PerfT>& perf_results,
                           size_t workspace_limit,
114 115
                           SearchResult<AlgoT>* search_result) {
  int best_algo_idx = -1;
116 117
  for (size_t i = 0; i < perf_results.size(); ++i) {
    auto result = perf_results[i];
118
    if (result.status == CUDNN_STATUS_SUCCESS &&
119
        result.memory < workspace_limit) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
      if (best_algo_idx == -1) {
        // The algorithm which has minimize time cost and need a workspace_size
        // fitting the workspace_limit constraint.
        best_algo_idx = i;
        // Each perf_results[i].time is set to be -1 in heuristic search.
        if (perf_results[best_algo_idx].time < 0) {
          break;
        }
      } else {
        float best_algo_time = perf_results[best_algo_idx].time;
        if ((result.time - best_algo_time) / best_algo_time < 0.01) {
          best_algo_idx = (result.memory < perf_results[best_algo_idx].memory)
                              ? i
                              : best_algo_idx;
          break;
        }
      }
137 138
    }
  }
139 140 141 142 143 144 145 146
  if (best_algo_idx != -1) {
    search_result->algo = perf_results[best_algo_idx].algo;
    search_result->time = perf_results[best_algo_idx].time;
    search_result->workspace_size = perf_results[best_algo_idx].memory;
  } else {
    VLOG(3) << "Can not find an algorithm that requires memory < "
            << ToMegaBytes(workspace_limit) << " MB";
  }
147 148
}

Y
Yiqun Liu 已提交
149 150
template <typename PerfT>
struct SearchAlgorithmBase {};
151

152 153 154 155
// cuDNN convolution forward algorithm searcher, consisted of three searching
// modes, namely: deterministic, heuristic and exhaustive_search mode.
// As well as one workspace size acquirsition function with respect to
// the chosen alogrithm.
Q
qingqing01 已提交
156
template <>
Y
Yiqun Liu 已提交
157
struct SearchAlgorithmBase<cudnnConvolutionFwdAlgoPerf_t> {
158 159
  using PerfT = cudnnConvolutionFwdAlgoPerf_t;
  using AlgoT = cudnnConvolutionFwdAlgo_t;
Y
Yiqun Liu 已提交
160 161
  constexpr static phi::autotune::AlgorithmType kAlgoType =
      phi::autotune::AlgorithmType::kConvForward;
Q
qingqing01 已提交
162

163 164
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionFwdAlgo_t algo) {
Q
qingqing01 已提交
165
    size_t workspace_size = 0;
166
    PADDLE_ENFORCE_GPU_SUCCESS(
167
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
168 169 170 171 172 173 174
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
175 176
    return workspace_size;
  }
177

Y
Yiqun Liu 已提交
178
 protected:
H
hong 已提交
179 180 181
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size = GetWorkspaceSize(args, static_cast<AlgoT>(1));
    return SearchResult<AlgoT>(static_cast<AlgoT>(1), -1.0, workspace_size);
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  }

  // Heuristic search mode, calling the cudnnGetXxxAlgorithm.
  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
197 198 199 200 201 202 203 204
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            kNUM_CUDNN_FWD_ALGS,
            &actual_perf_count,
            perf_results.data()));
205 206 207 208 209
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
Y
Yiqun Liu 已提交
210 211 212 213
      VLOG(4) << GetPerfResultString<PerfT>("[Heuristic] FwdAlgo Perf result",
                                            perf_results,
                                            actual_perf_count,
                                            workspace_size_limit);
214
      // cudnnGetConvolutionForwardAlgorithm is removed in CUDNN-8
215 216
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
217 218 219 220 221 222 223
#else
      VLOG(3) << "Fallback to non-v7 method to find conv algorithm "
                 "becasue the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
224 225 226 227 228
              args.handle,
              args.idesc.desc(),
              args.wdesc.desc(),
              args.cdesc.desc(),
              args.odesc.desc(),
229
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
230 231
              workspace_size_limit,
              &(result.algo)));
232 233 234 235 236
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardAlgorithm(
237 238 239 240 241 242 243
            args.handle,
            args.idesc.desc(),
            args.wdesc.desc(),
            args.cdesc.desc(),
            args.odesc.desc(),
            CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
            workspace_size_limit,
244 245
            &(result.algo)));
#endif
H
hong 已提交
246
    result.workspace_size = GetWorkspaceSize(args, result.algo);
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(4) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_FWD_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
265 266 267 268 269 270 271 272 273 274 275 276 277
              args.handle,
              args.idesc.desc(),
              args.x->data<T>(),
              args.wdesc.desc(),
              args.w->data<T>(),
              args.cdesc.desc(),
              args.odesc.desc(),
              const_cast<T*>(args.o->data<T>()),
              kNUM_CUDNN_FWD_ALGS,
              &returned_algo_count,
              perf_results.data(),
              workspace_ptr,
              max_workspace_size));
278 279 280
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
281 282
    workspace_handle.RunFuncSync(
        cudnn_find_func, max_workspace_size, UseFixedWorkspace());
283 284

    VLOG(4) << GetPerfResultString<PerfT>(
285 286 287 288 289 290
        "[Exhaustive Search] FwdAlgo Perf result",
        perf_results,
        returned_algo_count,
        workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(
        perf_results, workspace_size_limit, &result);
291

H
hong 已提交
292
    result.workspace_size = GetWorkspaceSize(args, result.algo);
293 294 295 296 297
    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
298 299 300 301 302 303
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_FWD_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
304 305 306 307 308 309 310
                args.handle,
                args.idesc.desc(),
                args.wdesc.desc(),
                args.cdesc.desc(),
                args.odesc.desc(),
                static_cast<cudnnConvolutionFwdAlgo_t>(algo),
                &workspace_size);
311 312
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
313 314 315
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
316
      return max_workspace_size;
317 318 319 320
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
321 322
};

323 324 325 326 327 328
// cuDNN convolution backward data-algorithm searcher, consisting of three
// searching modes, namely: deterministic, heuristic, and exhaustive_search
// mode. Specially, there are 2 pattens of exhaustive search mode, one for
// HALF precision only, one for the rest.
// As well as one workspace size acquirsition function with
// respect to the chosen alogrithm.
Q
qingqing01 已提交
329
template <>
Y
Yiqun Liu 已提交
330
struct SearchAlgorithmBase<cudnnConvolutionBwdDataAlgoPerf_t> {
331 332
  using PerfT = cudnnConvolutionBwdDataAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdDataAlgo_t;
Y
Yiqun Liu 已提交
333 334
  constexpr static phi::autotune::AlgorithmType kAlgoType =
      phi::autotune::AlgorithmType::kConvBackwardData;
Q
qingqing01 已提交
335

336 337
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdDataAlgo_t algo) {
Q
qingqing01 已提交
338
    size_t workspace_size = 0;
339
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
340
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
341 342 343 344 345 346 347
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
348 349
    return workspace_size;
  }
350

Y
Yiqun Liu 已提交
351
 protected:
H
hong 已提交
352 353 354 355 356
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size =
        GetWorkspaceSize(args, CUDNN_CONVOLUTION_BWD_DATA_ALGO_1);
    return SearchResult<AlgoT>(
        CUDNN_CONVOLUTION_BWD_DATA_ALGO_1, -1.0, workspace_size);
357 358 359 360 361 362 363 364 365 366 367 368 369 370
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
371 372 373 374 375 376 377 378
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
            kNUM_CUDNN_BWD_DATA_ALGS,
            &actual_perf_count,
            perf_results.data()));
379 380 381 382
    result.algo = perf_results[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
    int stride_dim = args.x->dims().size() - 2;
383 384
    bool blacklist = std::any_of(args.s.begin(),
                                 args.s.begin() + stride_dim,
385 386 387 388 389 390 391 392 393 394 395 396
                                 [=](int n) { return n != 1; });
    if (blacklist && (perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                      perf_results[best_algo_idx].algo ==
                          CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
      result.algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    }
#endif
    result.workspace_size = GetWorkspaceSize(args, result.algo);
    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardDataAlgorithm is removed in CUDNN-8
397 398
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
399 400 401 402 403 404 405
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
406 407 408 409 410
              args.handle,
              args.wdesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.idesc.desc(),
411
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
412 413
              workspace_size_limit,
              &(result.algo)));
414 415 416 417 418
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
419 420 421 422 423
            args.handle,
            args.wdesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.idesc.desc(),
424
            CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
425 426
            workspace_size_limit,
            &(result.algo)));
427
#endif
H
hong 已提交
428
    result.workspace_size = GetWorkspaceSize(args, result.algo);
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    size_t max_workspace_size = GetMaxWorkspaceSize(args, workspace_size_limit);
    VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
            << " MB";

    int returned_algo_count;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_DATA_ALGS);
    auto cudnn_find_func = [&](void* workspace_ptr) {
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardDataAlgorithmEx(
447 448 449 450 451 452 453 454 455 456 457 458 459
              args.handle,
              args.wdesc.desc(),
              args.w->data<T>(),
              args.odesc.desc(),
              args.o->data<T>(),
              args.cdesc.desc(),
              args.idesc.desc(),
              const_cast<T*>(args.x->data<T>()),
              kNUM_CUDNN_BWD_DATA_ALGS,
              &returned_algo_count,
              perf_results.data(),
              workspace_ptr,
              max_workspace_size));
460 461 462
    };

    auto workspace_handle = ctx.cudnn_workspace_handle();
463 464
    workspace_handle.RunFuncSync(
        cudnn_find_func, max_workspace_size, UseFixedWorkspace());
465 466

    VLOG(4) << GetPerfResultString<PerfT>(
467 468 469 470 471 472
        "[Exhaustive Search] BwdDataAlgo Perf result",
        perf_results,
        returned_algo_count,
        workspace_size_limit);
    ChooseAlgoByWorkspace<PerfT, AlgoT>(
        perf_results, workspace_size_limit, &result);
473

H
hong 已提交
474
    result.workspace_size = GetWorkspaceSize(args, result.algo);
475 476 477 478 479
    return result;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
480 481 482 483 484 485
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_DATA_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
486 487 488 489 490
                args.handle,
                args.wdesc.desc(),
                args.odesc.desc(),
                args.cdesc.desc(),
                args.idesc.desc(),
491 492
                static_cast<cudnnConvolutionBwdDataAlgo_t>(algo),
                &workspace_size);
493 494
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
495 496 497
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
498
      return max_workspace_size;
499 500 501 502
    } else {
      return workspace_size_limit;
    }
  }
Q
qingqing01 已提交
503 504
};

505 506 507 508
// cuDNN convution backward filter-algorithm searcher, consisted of three
// algorithm searching modes, namely: deterministic, heuristic, and
// exhaustive_search mode. As well as one workspace size acquirsition function
// with respect to the chosen alogrithm.
Q
qingqing01 已提交
509
template <>
Y
Yiqun Liu 已提交
510
struct SearchAlgorithmBase<cudnnConvolutionBwdFilterAlgoPerf_t> {
511 512
  using PerfT = cudnnConvolutionBwdFilterAlgoPerf_t;
  using AlgoT = cudnnConvolutionBwdFilterAlgo_t;
Y
Yiqun Liu 已提交
513 514
  constexpr static phi::autotune::AlgorithmType kAlgoType =
      phi::autotune::AlgorithmType::kConvBackwardFilter;
Q
qingqing01 已提交
515

516 517
  static size_t GetWorkspaceSize(const ConvArgs& args,
                                 cudnnConvolutionBwdFilterAlgo_t algo) {
518
    platform::CUDAGraphCaptureModeGuard guard;
Q
qingqing01 已提交
519
    size_t workspace_size = 0;
520
    PADDLE_ENFORCE_GPU_SUCCESS(
Q
qingqing01 已提交
521
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
522 523 524 525 526 527 528
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            algo,
            &workspace_size));
Q
qingqing01 已提交
529 530
    return workspace_size;
  }
531

Y
Yiqun Liu 已提交
532
 protected:
H
hong 已提交
533 534 535 536 537
  static SearchResult<AlgoT> FindAlgoDeterministic(const ConvArgs& args) {
    auto workspace_size =
        GetWorkspaceSize(args, CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1);
    return SearchResult<AlgoT>(
        CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, -1.0, workspace_size);
538 539 540 541 542 543 544 545 546 547 548 549 550 551
  }

  static SearchResult<AlgoT> FindAlgoHeuristic(const ConvArgs& args,
                                               const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());

#if CUDNN_VERSION >= 7001
    int actual_perf_count;
    int best_algo_idx = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
552 553 554 555 556 557 558 559
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
            kNUM_CUDNN_BWD_FILTER_ALGS,
            &actual_perf_count,
            perf_results.data()));
560 561 562 563 564 565
    result.algo = perf_results[best_algo_idx].algo;
    result.workspace_size = perf_results[best_algo_idx].memory;

    if (result.workspace_size > workspace_size_limit) {
#if CUDNN_VERSION >= 8000
      // cudnnGetConvolutionBackwardFilterAlgorithm is removed in CUDNN-8
566 567
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
568 569 570 571 572 573 574
#else
      VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                 "the workspace size request("
              << result.workspace_size << ") exceeds the limit("
              << workspace_size_limit << ")";
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
575 576 577 578 579
              args.handle,
              args.idesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.wdesc.desc(),
580
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
581 582
              workspace_size_limit,
              &(result.algo)));
583 584 585 586 587
#endif
    }
#else
    PADDLE_ENFORCE_GPU_SUCCESS(
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
588 589 590 591 592
            args.handle,
            args.idesc.desc(),
            args.odesc.desc(),
            args.cdesc.desc(),
            args.wdesc.desc(),
593
            CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
594 595
            workspace_size_limit,
            &(result.algo)));
596 597
#endif

H
hong 已提交
598
    result.workspace_size = GetWorkspaceSize(args, result.algo);
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    return result;
  }

  template <typename T>
  static SearchResult<AlgoT> FindAlgoExhaustiveSearch(
      const ConvArgs& args, const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    int returned_algo_count = 0;
    std::vector<PerfT> perf_results(kNUM_CUDNN_BWD_FILTER_ALGS);
    size_t workspace_size_limit =
        CalcWorkspaceLimitInBytes(UseFixedWorkspace());
    auto workspace_handle = ctx.cudnn_workspace_handle();
    if (platform::CudnnDataType<T>::type != CUDNN_DATA_HALF) {
      size_t max_workspace_size =
          GetMaxWorkspaceSize(args, workspace_size_limit);
      VLOG(3) << "max_workspace_size=" << ToMegaBytes(max_workspace_size)
              << " MB";

      auto cudnn_find_func = [&](void* workspace_ptr) {
        PADDLE_ENFORCE_GPU_SUCCESS(
            platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithmEx(
620 621 622 623 624 625 626 627 628 629 630 631 632
                args.handle,
                args.idesc.desc(),
                args.x->data<T>(),
                args.odesc.desc(),
                args.o->data<T>(),
                args.cdesc.desc(),
                args.wdesc.desc(),
                const_cast<T*>(args.w->data<T>()),
                kNUM_CUDNN_BWD_FILTER_ALGS,
                &returned_algo_count,
                perf_results.data(),
                workspace_ptr,
                max_workspace_size));
633
      };
634 635
      workspace_handle.RunFuncSync(
          cudnn_find_func, max_workspace_size, UseFixedWorkspace());
636 637

      VLOG(4) << GetPerfResultString<PerfT>(
638 639 640 641 642 643
          "[Exhaustive Search] BwdFilterAlgo Perf result",
          perf_results,
          returned_algo_count,
          workspace_size_limit);
      ChooseAlgoByWorkspace<PerfT, AlgoT>(
          perf_results, workspace_size_limit, &result);
644 645 646 647 648
    } else {
      int max_algos = GetAlgorithmMaxCount(args.handle);
      std::vector<PerfT> perf_results(max_algos);
      PADDLE_ENFORCE_GPU_SUCCESS(
          platform::dynload::cudnnFindConvolutionBackwardFilterAlgorithm(
649 650 651 652 653 654 655 656
              args.handle,
              args.idesc.desc(),
              args.odesc.desc(),
              args.cdesc.desc(),
              args.wdesc.desc(),
              perf_results.size(),
              &returned_algo_count,
              perf_results.data()));
657 658 659
      perf_results.resize(returned_algo_count);

      VLOG(4) << GetPerfResultString<PerfT>(
660 661 662 663
          "[Exhaustive Search] BwdFilterAlgo Perf result",
          perf_results,
          perf_results.size(),
          workspace_size_limit);
664 665 666
      ChooseAlgo(perf_results, workspace_size_limit, &result);
    }

H
hong 已提交
667
    result.workspace_size = GetWorkspaceSize(args, result.algo);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    return result;
  }

  static int GetAlgorithmMaxCount(cudnnHandle_t handle) {
#if CUDNN_VERSION_MIN(7, 0, 1)
    int max_algos = 0;
    auto status =
        platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
            handle, &max_algos);
    if (status == gpuSuccess) {
      VLOG(5) << "[BackwardFilter] max_algos: predefined="
              << kNUM_CUDNN_BWD_FILTER_ALGS << ", actual=" << max_algos;
      return max_algos;
    }
#endif
    return kNUM_CUDNN_BWD_FILTER_ALGS;
  }

  static size_t GetMaxWorkspaceSize(const ConvArgs& args,
                                    size_t workspace_size_limit) {
688 689 690 691 692 693
    if (!UseFixedWorkspace()) {
      size_t max_workspace_size = 0;
      for (size_t algo = 0; algo < kNUM_CUDNN_BWD_FILTER_ALGS; ++algo) {
        size_t workspace_size = 0;
        auto status =
            platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
694 695 696 697 698
                args.handle,
                args.idesc.desc(),
                args.odesc.desc(),
                args.cdesc.desc(),
                args.wdesc.desc(),
699 700
                static_cast<cudnnConvolutionBwdFilterAlgo_t>(algo),
                &workspace_size);
701 702
        if (status == CUDNN_STATUS_SUCCESS &&
            workspace_size <= workspace_size_limit) {
703 704 705
          max_workspace_size = std::max(workspace_size, max_workspace_size);
        }
      }
706
      return max_workspace_size;
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
    } else {
      return workspace_size_limit;
    }
  }

  static void ChooseAlgo(const std::vector<PerfT>& perf_results,
                         size_t workspace_limit,
                         SearchResult<AlgoT>* algo_result) {
    for (size_t i = 0; i != perf_results.size(); ++i) {
      const auto& result = perf_results[i];
      if (result.status == CUDNN_STATUS_SUCCESS &&
          (result.memory <= workspace_limit)) {
        if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
            (i != perf_results.size() - 1)) {
          const auto& next_result = perf_results[i + 1];
          if (next_result.status == CUDNN_STATUS_SUCCESS &&
              next_result.algo == result.algo &&
              next_result.memory == result.memory &&
              next_result.mathType != CUDNN_TENSOR_OP_MATH &&
              next_result.time < 1.01 * result.time) {
            // Skip over this result- it's not really a Tensor Core algo.
            // Because it is only 1% performance difference.
            // Prefer to choose the next equivalent non-Tensor Core algo.
            continue;
          }
        }
        algo_result->algo = result.algo;
        algo_result->time = result.time;
        auto math_type_str = "0";
        if (result.mathType == CUDNN_TENSOR_OP_MATH) {
          math_type_str = "1";
        }
        VLOG(3) << "    choose algo: " << result.algo
                << ", TC: " << math_type_str << ", time: " << result.time
                << " ms, wksp = " << result.memory
                << ", status = " << result.status;
        break;
      }
    }
  }
Q
qingqing01 已提交
747 748
};

Y
Yiqun Liu 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
template <typename PerfT>
struct SearchAlgorithm : public SearchAlgorithmBase<PerfT> {
  using AlgoT = typename SearchAlgorithmBase<PerfT>::AlgoT;

  template <typename T>
  static SearchResult<AlgoT> Find(const ConvArgs& args,
                                  bool exhaustive_search,
                                  bool deterministic,
                                  const phi::GPUContext& ctx) {
    SearchResult<AlgoT> result;
    auto dtype = platform::CudnnDataType<T>::type;
    SetConvMathType(ctx, dtype, args.cdesc);

    if (deterministic) {
      result = SearchAlgorithmBase<PerfT>::FindAlgoDeterministic(args);
    } else {
      // 1. Once turning on exhaustive FLAGS, always get exhaustive_search.
      // 2. Once turning on auto-tune, runn heuristic search(default) before
      //    auto-tune process, run exhaustive_search during mentioned process.
      // 3. After auto-tune process, run cached algorithm if cached, run
      //    default mode for the rest.
      auto key = args.Convert2ConvCacheKey<T>();
      auto& cache = phi::autotune::AutoTuneCache::Instance().GetConv(
          SearchAlgorithmBase<PerfT>::kAlgoType);
      if (cache.Find(key)) {
        auto t = cache.Get(key);
        result.algo = static_cast<AlgoT>(t.algo);
        result.workspace_size = t.workspace_size;
      } else {
        bool use_autotune =
            phi::autotune::AutoTuneStatus::Instance().UseAutoTune();
        if (exhaustive_search || use_autotune) {
          result =
              SearchAlgorithmBase<PerfT>::template FindAlgoExhaustiveSearch<T>(
                  args, ctx);
        } else {
          result = SearchAlgorithmBase<PerfT>::FindAlgoHeuristic(args, ctx);
        }
        phi::autotune::DnnNode node(static_cast<int64_t>(result.algo),
                                    result.workspace_size);
        cache.Set(key, node);
      }
    }
    VLOG(3) << "[cuDNN Convoltion] exhaustive_search=" << exhaustive_search
            << ", deterministic=" << deterministic
            << ", choose algo=" << result.algo
            << ", workspace=" << ToMegaBytes(result.workspace_size) << " MB";
    return result;
  }

  static void SetConvMathType(const phi::GPUContext& ctx,
                              cudnnDataType_t dtype,
                              const platform::ConvolutionDescriptor& cdesc) {
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    if (ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_TENSOR_OP_MATH));
      VLOG(5) << "Enable Tensor Core for FLOAT16";
#if CUDA_VERSION >= 11000
#if CUDNN_VERSION_MIN(8, 1, 0)
    } else if (ctx.GetComputeCapability() >= 80 &&
               dtype == CUDNN_DATA_BFLOAT16) {
      VLOG(5) << "Enable Tensor Core for BFLOAT16";
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_TENSOR_OP_MATH));
#endif  // CUDNN_VERSION_MIN(8, 1, 0)
    } else if (dtype == CUDNN_DATA_FLOAT && !cdesc.allow_tf32_) {
      VLOG(5) << "Disable TensorFloat (Tensor Core) for FLOAT";
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
    } else {
      PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
          cdesc.desc(), CUDNN_DEFAULT_MATH));
    }
#endif
  }
};

Q
qingqing01 已提交
828 829
}  // namespace operators
}  // namespace paddle