test_engine.cc 9.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>

N
nhzlx 已提交
18
#include "paddle/fluid/framework/tensor.h"
19
#include "paddle/fluid/inference/tensorrt/engine.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class TensorRTEngineTest : public ::testing::Test {
 protected:
  void SetUp() override {
L
Leo Chen 已提交
29
    ctx_ = new phi::GPUContext(platform::CUDAPlace(0));
W
Wilber 已提交
30 31 32 33 34 35 36 37 38 39 40
    ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance()
                           .GetAllocator(platform::CUDAPlace(0), ctx_->stream())
                           .get());
    ctx_->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CPUPlace())
            .get());
    ctx_->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetZeroAllocator(platform::CUDAPlace(0))
            .get());
W
wanghuancoder 已提交
41 42 43 44
    ctx_->SetPinnedAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CUDAPinnedPlace())
            .get());
W
Wilber 已提交
45
    ctx_->PartialInitWithAllocator();
N
nhzlx 已提交
46

47
    engine_ = new TensorRTEngine(10, 1 << 10);
Y
Yan Chunwei 已提交
48 49 50
    engine_->InitNetwork();
  }

N
nhzlx 已提交
51 52 53 54 55 56
  void TearDown() override {
    if (engine_) {
      delete engine_;
      engine_ = nullptr;
    }
  }
N
nhzlx 已提交
57 58 59

  void PrepareInputOutput(const std::vector<float> &input,
                          std::vector<int> output_shape) {
60
    paddle::framework::TensorFromVector(input, *ctx_, &input_);
61
    output_.Resize(phi::make_ddim(output_shape));
N
nhzlx 已提交
62 63 64
  }

  void GetOutput(std::vector<float> *output) {
65
    paddle::framework::TensorToVector(output_, *ctx_, output);
Y
Yan Chunwei 已提交
66 67 68
  }

 protected:
N
nhzlx 已提交
69 70 71
  framework::Tensor input_;
  framework::Tensor output_;
  TensorRTEngine *engine_;
L
Leo Chen 已提交
72
  phi::GPUContext *ctx_;
Y
Yan Chunwei 已提交
73 74 75 76 77 78 79 80
};

TEST_F(TensorRTEngineTest, add_layer) {
  const int size = 1;

  float raw_weight[size] = {2.};  // Weight in CPU memory.
  float raw_bias[size] = {3.};

N
nhzlx 已提交
81 82
  std::vector<void *> buffers(2);  // TRT binded inputs

Y
Yan Chunwei 已提交
83 84 85
  LOG(INFO) << "create weights";
  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, size);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, size);
86 87 88 89
  auto *x = engine_->DeclareInput(
      "x", nvinfer1::DataType::kFLOAT, nvinfer1::Dims3{1, 1, 1});
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(
      engine_, FullyConnected, *x, size, weight.get(), bias.get());
90 91 92
  PADDLE_ENFORCE_NOT_NULL(fc_layer,
                          platform::errors::InvalidArgument(
                              "TRT fully connected layer building failed."));
Y
Yan Chunwei 已提交
93 94 95 96 97 98 99

  engine_->DeclareOutput(fc_layer, 0, "y");
  LOG(INFO) << "freeze network";
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  // fill in real data
N
nhzlx 已提交
100 101 102 103 104 105 106 107 108 109
  std::vector<float> x_v = {1234};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {1});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

110 111 112 113 114 115 116 117 118
  LOG(INFO) << "Set attr";
  engine_->Set("test_attr", new std::string("test_attr"));
  if (engine_->Has("test_attr")) {
    auto attr_val = engine_->Get<std::string>("test_attr");
    engine_->Erase("test_attr");
  }
  std::string *attr_key = new std::string("attr_key");
  engine_->SetNotOwned("attr1", attr_key);

Y
Yan Chunwei 已提交
119
  LOG(INFO) << "to execute";
120
  engine_->Execute(1, &buffers, ctx_->stream());
Y
Yan Chunwei 已提交
121 122

  LOG(INFO) << "to get output";
N
nhzlx 已提交
123
  GetOutput(&y_cpu);
Y
Yan Chunwei 已提交
124 125

  LOG(INFO) << "to checkout output";
N
nhzlx 已提交
126
  ASSERT_EQ(y_cpu[0], x_v[0] * 2 + 3);
127 128

  delete attr_key;
Y
Yan Chunwei 已提交
129 130
}

X
Xin Pan 已提交
131 132 133 134 135 136
TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
  // Weight in CPU memory.
  // It seems tensorrt FC use col-major: [[1.0, 3.3], [1.1, 4.4]]
  // instead of row-major, which is [[1.0, 1.1], [3.3, 4.4]]
  float raw_weight[4] = {1.0, 1.1, 3.3, 4.4};
  float raw_bias[2] = {1.3, 2.4};
N
nhzlx 已提交
137
  std::vector<void *> buffers(2);  // TRT binded inputs
X
Xin Pan 已提交
138 139 140

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 4);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 2);
141 142 143 144
  auto *x = engine_->DeclareInput(
      "x", nvinfer1::DataType::kFLOAT, nvinfer1::Dims3{1, 2, 1});
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(
      engine_, FullyConnected, *x, 2, weight.get(), bias.get());
145 146 147
  PADDLE_ENFORCE_NOT_NULL(fc_layer,
                          platform::errors::InvalidArgument(
                              "TRT fully connected layer building failed."));
X
Xin Pan 已提交
148 149 150 151 152

  engine_->DeclareOutput(fc_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
153 154 155 156 157 158 159 160 161 162 163
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

164
  engine_->Execute(1, &buffers, ctx_->stream());
X
Xin Pan 已提交
165 166

  LOG(INFO) << "to get output";
N
nhzlx 已提交
167
  GetOutput(&y_cpu);
N
nhzlx 已提交
168

169 170 171 172
  auto dims = engine_->GetITensor("y")->getDimensions();
  ASSERT_EQ(dims.nbDims, 3);
  ASSERT_EQ(dims.d[0], 2);
  ASSERT_EQ(dims.d[1], 1);
N
nhzlx 已提交
173

X
Xin Pan 已提交
174 175 176 177
  ASSERT_EQ(y_cpu[0], 4.5);
  ASSERT_EQ(y_cpu[1], 14.5);
}

178
TEST_F(TensorRTEngineTest, test_conv2d) {
179 180 181
  // Weight in CPU memory.
  float raw_weight[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  float raw_bias[1] = {0};
N
nhzlx 已提交
182
  std::vector<void *> buffers(2);  // TRT binded inputs
183 184 185

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 9);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 1);
186 187 188 189 190 191 192 193 194
  auto *x = engine_->DeclareInput(
      "x", nvinfer1::DataType::kFLOAT, nvinfer1::Dims3{1, 3, 3});
  auto *conv_layer = TRT_ENGINE_ADD_LAYER(engine_,
                                          Convolution,
                                          *x,
                                          1,
                                          nvinfer1::DimsHW{3, 3},
                                          weight.get(),
                                          bias.get());
195 196 197
  PADDLE_ENFORCE_NOT_NULL(conv_layer,
                          platform::errors::InvalidArgument(
                              "TRT convolution layer building failed."));
198 199 200 201 202 203 204
  conv_layer->setStride(nvinfer1::DimsHW{1, 1});
  conv_layer->setPadding(nvinfer1::DimsHW{1, 1});

  engine_->DeclareOutput(conv_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
205
  // fill in real data
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  std::vector<float> x_v = {1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0,
                            1.0};
N
nhzlx 已提交
224 225 226 227 228 229 230 231 232
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {18});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

233
  engine_->Execute(2, &buffers, ctx_->stream());
234 235

  LOG(INFO) << "to get output";
N
nhzlx 已提交
236 237
  GetOutput(&y_cpu);

238 239 240 241
  ASSERT_EQ(y_cpu[0], 4.0);
  ASSERT_EQ(y_cpu[1], 6.0);
}

242 243
TEST_F(TensorRTEngineTest, test_pool2d) {
  // Weight in CPU memory.
244 245
  auto *x = engine_->DeclareInput(
      "x", nvinfer1::DataType::kFLOAT, nvinfer1::Dims3{1, 2, 2});
246

N
nhzlx 已提交
247
  std::vector<void *> buffers(2);  // TRT binded inputs
248
  nvinfer1::PoolingType pool_t = nvinfer1::PoolingType::kAVERAGE;
249 250
  auto *pool_layer = TRT_ENGINE_ADD_LAYER(
      engine_, Pooling, *x, pool_t, nvinfer1::DimsHW{2, 2});
251

252 253 254
  PADDLE_ENFORCE_NOT_NULL(
      pool_layer,
      platform::errors::InvalidArgument("TRT pooling layer building failed."));
255 256 257 258 259 260 261
  pool_layer->setStride(nvinfer1::DimsHW{1, 1});
  pool_layer->setPadding(nvinfer1::DimsHW{0, 0});

  engine_->DeclareOutput(pool_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
262 263 264 265 266 267 268 269 270 271 272
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0, 5.0, 0.0, 2.0, 3.0, 5.0, 10.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

273
  engine_->Execute(2, &buffers, ctx_->stream());
274 275

  LOG(INFO) << "to get output";
N
nhzlx 已提交
276
  GetOutput(&y_cpu);
277 278 279 280 281

  ASSERT_EQ(y_cpu[0], 2.0);
  ASSERT_EQ(y_cpu[1], 5.0);
}

Y
Yan Chunwei 已提交
282 283 284
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle