Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
034ba1c2
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
034ba1c2
编写于
2月 14, 2019
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add static model load for trt
1. bind trt input and output to fluid tensors
上级
fc198b1f
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
313 addition
and
344 deletion
+313
-344
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
...id/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
+113
-62
paddle/fluid/inference/engine.h
paddle/fluid/inference/engine.h
+0
-5
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
+1
-18
paddle/fluid/inference/tensorrt/convert/ut_helper.h
paddle/fluid/inference/tensorrt/convert/ut_helper.h
+43
-26
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+7
-110
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+2
-39
paddle/fluid/inference/tensorrt/test_engine.cc
paddle/fluid/inference/tensorrt/test_engine.cc
+89
-43
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+58
-41
未找到文件。
paddle/fluid/inference/analysis/ir_passes/tensorrt_subgraph_pass.cc
浏览文件 @
034ba1c2
...
...
@@ -33,6 +33,14 @@ using framework::ir::Node;
std
::
vector
<
std
::
string
>
ExtractParameters
(
const
std
::
unordered_set
<
Node
*>
&
nodes
);
void
RenameAndGetOutputs
(
const
std
::
vector
<
framework
::
ir
::
Node
*>
&
subgraph_nodes
,
framework
::
BlockDesc
*
block_desc
,
const
std
::
set
<
std
::
string
>
&
input_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>
*
output_name_map
);
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
analysis
::
TensorRtSubgraphPass
::
ApplyImpl
(
std
::
unique_ptr
<
framework
::
ir
::
Graph
>
graph
)
const
{
...
...
@@ -120,9 +128,6 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
input_names
.
insert
(
x
->
Name
());
input_names_with_id
.
insert
(
x
->
Name
()
+
std
::
to_string
(
x
->
id
()));
}
op_desc
->
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
(
input_names
.
begin
(),
input_names
.
end
()));
std
::
set
<
std
::
string
>
output_names
;
std
::
set
<
std
::
string
>
output_names_with_id
;
for
(
auto
*
x
:
node
->
outputs
)
{
...
...
@@ -130,11 +135,8 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
output_names_with_id
.
insert
(
x
->
Name
()
+
std
::
to_string
(
x
->
id
()));
}
op_desc
->
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
(
output_names
.
begin
(),
output_names
.
end
()));
op_desc
->
SetType
(
"tensorrt_engine"
);
std
::
unordered_map
<
std
::
string
,
std
::
string
>
output_name_map
;
auto
&
subgraph_nodes
=
*
Agent
(
node
).
subgraph
();
// The following procedure is used to rename all the intermediate
// variables and the output variables of the subgraph.
...
...
@@ -148,61 +150,8 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
// input of a OP, but also the output of a Op, there will be problems.
// So we have to rename the variable in the subgraph to make sure
// it is either an OP's input or an OP's output.
auto
&
subgraph_nodes
=
*
Agent
(
node
).
subgraph
();
for
(
size_t
index
=
0
;
index
<
block_desc
.
OpSize
();
++
index
)
{
framework
::
proto
::
OpDesc
*
op
=
block_desc
.
Op
(
index
)
->
Proto
();
auto
correspond_node
=
subgraph_nodes
[
index
];
PADDLE_ENFORCE_EQ
(
correspond_node
->
Name
(),
op
->
type
());
std
::
unordered_map
<
std
::
string
,
size_t
>
var2id
;
for
(
auto
*
in_var
:
correspond_node
->
inputs
)
{
var2id
[
in_var
->
Name
()]
=
in_var
->
id
();
}
// rename for the input variables of op inside subgraph
for
(
int
i
=
0
;
i
<
op
->
inputs_size
();
i
++
)
{
// one input
auto
*
in_var
=
op
->
mutable_inputs
(
i
);
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
in_var
->
arguments_size
();
k
++
)
{
// all the arguments
std
::
string
arg_value
=
in_var
->
arguments
(
k
);
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
input_names_with_id
.
count
(
arg_value_with_id
))
{
replaced_names
.
push_back
(
arg_value
);
}
else
{
replaced_names
.
push_back
(
arg_value_with_id
);
}
}
in_var
->
clear_arguments
();
for
(
size_t
k
=
0
;
k
<
replaced_names
.
size
();
k
++
)
{
in_var
->
add_arguments
(
replaced_names
[
k
]);
}
}
var2id
.
clear
();
for
(
auto
out_var
:
correspond_node
->
outputs
)
{
var2id
[
out_var
->
Name
()]
=
out_var
->
id
();
}
// rename for the output variables of op inside subgraph
for
(
int
i
=
0
;
i
<
op
->
outputs_size
();
i
++
)
{
framework
::
proto
::
OpDesc_Var
*
out_var
=
op
->
mutable_outputs
(
i
);
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
out_var
->
arguments_size
();
k
++
)
{
std
::
string
arg_value
=
out_var
->
arguments
(
k
);
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
output_names_with_id
.
count
(
arg_value_with_id
))
{
output_name_map
[
arg_value
]
=
arg_value_with_id
;
}
replaced_names
.
push_back
(
arg_value_with_id
);
}
out_var
->
clear_arguments
();
for
(
size_t
k
=
0
;
k
<
replaced_names
.
size
();
k
++
)
{
out_var
->
add_arguments
(
replaced_names
[
k
]);
}
}
}
RenameAndGetOutputs
(
subgraph_nodes
,
&
block_desc
,
input_names_with_id
,
&
output_names_with_id
,
&
output_names
,
&
output_name_map
);
// When tensorrt engine runs at the end of the operation,
// output_mapping help us copy the data from the renamed ITensor
...
...
@@ -222,6 +171,14 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
PADDLE_ENFORCE
(
!
block_desc
.
Proto
()
->
vars
().
empty
(),
"the block has no var-desc"
);
op_desc
->
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
(
input_names
.
begin
(),
input_names
.
end
()));
op_desc
->
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
(
output_names
.
begin
(),
output_names
.
end
()));
op_desc
->
SetType
(
"tensorrt_engine"
);
PADDLE_ENFORCE
(
!
output_mapping
.
empty
());
op_desc
->
SetBlockAttr
(
"sub_block"
,
new_block
);
SetAttr
(
op_desc
->
Proto
(),
"subgraph"
,
...
...
@@ -236,6 +193,7 @@ void TensorRtSubgraphPass::CreateTensorRTOp(framework::ir::Node *node,
auto
engine_key
=
GenerateEngineKey
(
input_names_with_id
,
output_names_with_id
);
// Get "" when there is no cached calibration table data.
std
::
string
calibration_data
=
GetTrtCalibTableData
(
Get
<
std
::
string
>
(
"model_opt_cache_dir"
),
engine_key
,
enable_int8
);
SetAttr
(
op_desc
->
Proto
(),
"calibration_data"
,
calibration_data
);
...
...
@@ -272,6 +230,99 @@ std::vector<std::string> ExtractParameters(
return
parameters
;
}
void
RenameAndGetOutputs
(
const
std
::
vector
<
framework
::
ir
::
Node
*>
&
subgraph_nodes
,
framework
::
BlockDesc
*
block_desc
,
const
std
::
set
<
std
::
string
>
&
input_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names_with_id
,
std
::
set
<
std
::
string
>
*
output_names
,
std
::
unordered_map
<
std
::
string
,
std
::
string
>
*
output_name_map
)
{
//// In the normal case, the paddle-trt exists bug when runing the googlenet.
// When there are more than two convolutions of 1 * 1 with the same input, the
// paddle-tensorrt will do the merging optimization, which fuse those conv
// into one conv, and then trigger bug. So, We should use strategy to avoid
// this optimization for the time being. This bug will be fixed in the future.
std
::
unordered_map
<
std
::
string
/*name*/
,
int
/*ITensor_quote_num*/
>
same_hierarchy_conv2d_num_map
;
for
(
size_t
index
=
0
;
index
<
block_desc
->
OpSize
();
++
index
)
{
framework
::
proto
::
OpDesc
*
op
=
block_desc
->
Op
(
index
)
->
Proto
();
framework
::
OpDesc
op_desc
(
*
op
,
nullptr
);
auto
correspond_node
=
subgraph_nodes
[
index
];
PADDLE_ENFORCE_EQ
(
correspond_node
->
Name
(),
op
->
type
());
std
::
unordered_map
<
std
::
string
,
size_t
>
var2id
;
std
::
unordered_map
<
std
::
string
,
framework
::
ir
::
Node
*>
in_vars
;
for
(
auto
*
in_var
:
correspond_node
->
inputs
)
{
var2id
[
in_var
->
Name
()]
=
in_var
->
id
();
in_vars
[
in_var
->
Name
()]
=
in_var
;
}
// rename for the input variables of op inside subgraph
for
(
int
i
=
0
;
i
<
op
->
inputs_size
();
i
++
)
{
// one input
auto
*
in_var
=
op
->
mutable_inputs
(
i
);
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
in_var
->
arguments_size
();
k
++
)
{
// all the arguments
std
::
string
arg_value
=
in_var
->
arguments
(
k
);
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
input_names_with_id
.
count
(
arg_value_with_id
))
{
replaced_names
.
push_back
(
arg_value
);
}
else
{
replaced_names
.
push_back
(
arg_value_with_id
);
}
}
in_var
->
clear_arguments
();
for
(
size_t
k
=
0
;
k
<
replaced_names
.
size
();
k
++
)
{
in_var
->
add_arguments
(
replaced_names
[
k
]);
}
}
var2id
.
clear
();
for
(
auto
out_var
:
correspond_node
->
outputs
)
{
var2id
[
out_var
->
Name
()]
=
out_var
->
id
();
}
if
(
op_desc
.
Type
()
==
"conv2d"
)
{
auto
input_var_name
=
op_desc
.
Input
(
"Input"
).
front
();
auto
filter_var_name
=
op_desc
.
Input
(
"Filter"
).
front
();
auto
out_var_name
=
op_desc
.
Output
(
"Output"
).
front
();
auto
filter_shape
=
in_vars
[
filter_var_name
]
->
Var
()
->
GetShape
();
const
std
::
vector
<
int
>
strides
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"strides"
));
const
std
::
vector
<
int
>
paddings
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"paddings"
));
if
(
same_hierarchy_conv2d_num_map
[
input_var_name
]
>
0
)
{
(
*
output_names_with_id
)
.
insert
(
out_var_name
+
std
::
to_string
(
var2id
[
out_var_name
]));
(
*
output_names
).
insert
(
out_var_name
);
}
else
if
(
filter_shape
[
2
]
==
1
&&
filter_shape
[
3
]
==
1
&&
strides
[
0
]
==
1
&&
strides
[
1
]
==
1
&&
paddings
[
0
]
==
0
&&
paddings
[
1
]
==
0
)
{
same_hierarchy_conv2d_num_map
[
input_var_name
]
+=
1
;
}
}
// rename for the output variables of op inside subgraph
for
(
int
i
=
0
;
i
<
op
->
outputs_size
();
i
++
)
{
framework
::
proto
::
OpDesc_Var
*
out_var
=
op
->
mutable_outputs
(
i
);
std
::
vector
<
std
::
string
>
replaced_names
;
for
(
int
k
=
0
;
k
<
out_var
->
arguments_size
();
k
++
)
{
std
::
string
arg_value
=
out_var
->
arguments
(
k
);
std
::
string
arg_value_with_id
=
arg_value
+
std
::
to_string
(
var2id
[
arg_value
]);
if
(
output_names_with_id
->
count
(
arg_value_with_id
))
{
(
*
output_name_map
)[
arg_value
]
=
arg_value_with_id
;
}
replaced_names
.
push_back
(
arg_value_with_id
);
}
out_var
->
clear_arguments
();
for
(
size_t
k
=
0
;
k
<
replaced_names
.
size
();
k
++
)
{
out_var
->
add_arguments
(
replaced_names
[
k
]);
}
}
}
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
...
...
paddle/fluid/inference/engine.h
浏览文件 @
034ba1c2
...
...
@@ -49,11 +49,6 @@ class EngineBase {
// Execute the engine, that will run the inference network.
virtual
void
Execute
(
int
batch_size
)
=
0
;
// Return the IO buffer that allocated in engine. One can read/write directly
// on the buffer. If the buffer's buffer is nullptr, one can also allocate
// memory and maintain it outside the engine.
virtual
Buffer
&
buffer
(
const
std
::
string
&
name
)
=
0
;
virtual
~
EngineBase
()
{}
};
// class EngineBase
...
...
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
浏览文件 @
034ba1c2
...
...
@@ -18,21 +18,6 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
bool
to_skip_merging_optimize
(
TensorRTEngine
*
engine
,
const
std
::
vector
<
int
>&
filters
,
const
std
::
vector
<
int
>&
strides
,
const
std
::
vector
<
int
>&
paddings
,
std
::
string
input_name
)
{
if
(
engine
->
itensor_quote_num
[
input_name
]
>
0
)
{
return
true
;
}
if
(
filters
[
0
]
==
1
&&
filters
[
1
]
==
1
&&
strides
[
0
]
==
1
&&
strides
[
1
]
==
1
&&
paddings
[
0
]
==
0
&&
paddings
[
1
]
==
0
)
engine
->
itensor_quote_num
[
input_name
]
+=
1
;
return
false
;
}
template
<
typename
RegistFunc
,
typename
SetDilationFunc
>
void
ConvertConv2d
(
TensorRTEngine
*
engine
,
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
,
bool
test_mode
,
...
...
@@ -100,9 +85,7 @@ void ConvertConv2d(TensorRTEngine* engine, const framework::proto::OpDesc& op,
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
engine
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
||
to_skip_merging_optimize
(
engine
,
{
filter_h
,
filter_w
},
strides
,
paddings
,
op_desc
.
Input
(
"Input"
).
front
()))
{
if
(
test_mode
)
{
engine
->
DeclareOutput
(
output_name
);
}
}
...
...
paddle/fluid/inference/tensorrt/convert/ut_helper.h
浏览文件 @
034ba1c2
...
...
@@ -146,19 +146,6 @@ class TRTConvertValidation {
// Declare outputs.
op_desc_
.
reset
(
new
framework
::
OpDesc
(
desc
,
nullptr
));
// Set Inputs.
for
(
const
auto
&
input
:
op_desc_
->
InputArgumentNames
())
{
if
(
parameters_
.
count
(
input
))
continue
;
auto
*
var
=
scope_
.
FindVar
(
input
);
PADDLE_ENFORCE
(
var
);
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
engine_
->
SetInputFromGPU
(
input
,
static_cast
<
void
*>
(
tensor
->
data
<
void
>
()),
sizeof
(
float
)
*
analysis
::
AccuDims
(
tensor
->
dims
(),
tensor
->
dims
().
size
()));
}
}
// We use the set 'neglected_output' here, because some Ops like batch norm,
...
...
@@ -171,34 +158,64 @@ class TRTConvertValidation {
platform
::
CUDAPlace
place
;
platform
::
CUDADeviceContext
ctx
(
place
);
op_
->
Run
(
scope_
,
place
);
std
::
vector
<
std
::
string
>
input_output_names
;
// Note: we need filter the parameter
for
(
const
auto
&
input
:
op_desc_
->
InputArgumentNames
())
{
if
(
parameters_
.
count
(
input
))
continue
;
input_output_names
.
push_back
(
input
);
}
// Collect the fluid outputs.
std
::
vector
<
std
::
vector
<
float
>>
fluid_outs
;
for
(
const
auto
&
output
:
op_desc_
->
OutputArgumentNames
())
{
if
(
neglected_output
.
count
(
output
))
continue
;
input_output_names
.
push_back
(
output
);
std
::
vector
<
float
>
fluid_out
;
auto
*
var
=
scope_
.
FindVar
(
output
);
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
TensorToVector
(
*
tensor
,
ctx
,
&
fluid_out
);
fluid_outs
.
push_back
(
fluid_out
);
}
// Bind input and output for TRT.
const
int
num_bindings
=
input_output_names
.
size
();
std
::
vector
<
void
*>
buffers
(
num_bindings
);
for
(
const
std
::
string
&
name
:
input_output_names
)
{
auto
*
var
=
scope_
.
FindVar
(
name
);
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
const
int
bind_index
=
engine_
->
engine
()
->
getBindingIndex
(
name
.
c_str
());
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
tensor
->
mutable_data
<
float
>
(
place
));
}
// Execute TRT.
engine_
->
Execute
(
batch_size
);
engine_
->
Execute
(
batch_size
,
buffers
);
cudaStreamSynchronize
(
engine_
->
stream
());
ASSERT_FALSE
(
op_desc_
->
OutputArgumentNames
().
empty
());
const
size_t
output_space_size
=
300
0
;
int
index
=
0
;
for
(
const
auto
&
output
:
op_desc_
->
OutputArgumentNames
())
{
if
(
neglected_output
.
count
(
output
))
continue
;
std
::
vector
<
float
>
fluid_out
;
std
::
vector
<
float
>
trt_out
(
output_space_size
);
engine_
->
GetOutputInCPU
(
output
,
&
trt_out
[
0
],
output_space_size
);
cudaStreamSynchronize
(
engine_
->
stream
());
std
::
vector
<
float
>
trt_out
;
auto
*
var
=
scope_
.
FindVar
(
output
);
auto
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
TensorToVector
(
*
tensor
,
ctx
,
&
fluid
_out
);
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
framework
::
TensorToVector
(
*
tensor
,
ctx
,
&
trt
_out
);
size_t
fluid_out_size
=
fluid_out
.
size
();
size_t
fluid_out_size
=
fluid_out
s
[
index
]
.
size
();
if
(
if_add_batch_
==
true
)
{
fluid_out_size
=
batch_size
*
(
framework
::
product
(
tensor
->
dims
())
/
max_batch_size_
);
}
// Compare two output
ASSERT_FALSE
(
fluid_out
.
empty
());
for
(
size_t
i
=
0
;
i
<
fluid_out_size
;
i
++
)
{
// Loose the threshold for CI in different machine model.
EXPECT_LT
(
std
::
abs
(
fluid_out
[
i
]
-
trt_out
[
i
]),
2e-5
);
EXPECT_LT
(
std
::
abs
(
fluid_out
s
[
index
]
[
i
]
-
trt_out
[
i
]),
2e-5
);
}
index
+=
1
;
}
}
...
...
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
034ba1c2
...
...
@@ -32,8 +32,14 @@ void TensorRTEngine::Build(const DescType &paddle_model) {
PADDLE_ENFORCE
(
false
,
"not implemented"
);
}
void
TensorRTEngine
::
Execute
(
int
batch_size
,
std
::
vector
<
void
*>
&
buffers
)
{
batch_size_
=
batch_size
;
infer_context_
->
enqueue
(
batch_size
,
buffers
.
data
(),
stream_
,
nullptr
);
cudaStreamSynchronize
(
stream_
);
SetRuntimeBatch
(
batch_size
);
}
void
TensorRTEngine
::
Execute
(
int
batch_size
)
{
freshDeviceId
();
batch_size_
=
batch_size
;
std
::
vector
<
void
*>
buffers
;
for
(
auto
&
buf
:
buffers_
)
{
...
...
@@ -61,7 +67,6 @@ TensorRTEngine::~TensorRTEngine() {
void
TensorRTEngine
::
FreezeNetwork
()
{
VLOG
(
3
)
<<
"TRT to freeze network"
;
freshDeviceId
();
PADDLE_ENFORCE
(
infer_builder_
!=
nullptr
,
"Call InitNetwork first to initialize network."
);
PADDLE_ENFORCE
(
infer_network_
!=
nullptr
,
...
...
@@ -81,30 +86,6 @@ void TensorRTEngine::FreezeNetwork() {
PADDLE_ENFORCE
(
infer_engine_
!=
nullptr
,
"build cuda engine failed!"
);
infer_context_
.
reset
(
infer_engine_
->
createExecutionContext
());
// allocate GPU buffers.
buffers_
.
resize
(
buffer_sizes_
.
size
());
for
(
auto
&
item
:
buffer_sizes_
)
{
// The output buffers are not set in the network building phrase, need to
// infer from the TesorRT network.
if
(
item
.
second
==
0
)
{
auto
slot_offset
=
infer_engine_
->
getBindingIndex
(
item
.
first
.
c_str
());
auto
dims
=
infer_engine_
->
getBindingDimensions
(
slot_offset
);
item
.
second
=
kDataTypeSize
[
static_cast
<
int
>
(
infer_engine_
->
getBindingDataType
(
slot_offset
))]
*
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
)
*
max_batch_
;
PADDLE_ENFORCE_GT
(
item
.
second
,
0
);
}
auto
&
buf
=
buffer
(
item
.
first
);
buf
.
max_size
=
item
.
second
*
max_batch_
;
CHECK
(
buf
.
buffer
==
nullptr
);
// buffer should be allocated only once.
PADDLE_ENFORCE_EQ
(
0
,
cudaMalloc
(
&
buf
.
buffer
,
item
.
second
*
max_batch_
));
buf
.
size
=
0
;
PADDLE_ENFORCE_LE
(
buf
.
max_size
,
1
<<
30
);
// 10G
buf
.
device
=
DeviceType
::
GPU
;
}
}
nvinfer1
::
ITensor
*
TensorRTEngine
::
DeclareInput
(
const
std
::
string
&
name
,
...
...
@@ -158,83 +139,6 @@ void TensorRTEngine::DeclareOutput(const std::string &name) {
buffer_sizes_
[
name
]
=
0
;
}
void
*
TensorRTEngine
::
GetOutputInGPU
(
const
std
::
string
&
name
)
{
return
buffer
(
name
).
buffer
;
}
void
TensorRTEngine
::
GetOutputInGPU
(
const
std
::
string
&
name
,
void
*
dst
,
size_t
max_size
)
{
// determine data size
auto
*
output
=
TensorRTEngine
::
GetITensor
(
name
);
nvinfer1
::
Dims
dims
=
output
->
getDimensions
();
auto
dim_size
=
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
);
size_t
dst_size
=
dim_size
*
runtime_batch_
*
kDataTypeSize
[
static_cast
<
int
>
(
output
->
getType
())];
auto
it
=
buffer_sizes_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
buffer_sizes_
.
end
());
PADDLE_ENFORCE_GT
(
it
->
second
,
0
);
PADDLE_ENFORCE_LE
(
dst_size
,
it
->
second
);
PADDLE_ENFORCE_GE
(
max_size
,
dst_size
);
auto
&
buf
=
buffer
(
name
);
PADDLE_ENFORCE_NOT_NULL
(
buf
.
buffer
,
"buffer should be allocated before"
);
PADDLE_ENFORCE_EQ
(
cudaMemcpyAsync
(
dst
,
buf
.
buffer
,
dst_size
,
cudaMemcpyDeviceToDevice
,
stream_
),
0
);
}
void
TensorRTEngine
::
GetOutputInCPU
(
const
std
::
string
&
name
,
void
*
dst
,
size_t
max_size
)
{
// determine data size
auto
*
output
=
TensorRTEngine
::
GetITensor
(
name
);
nvinfer1
::
Dims
dims
=
output
->
getDimensions
();
auto
dim_size
=
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
);
size_t
dst_size
=
dim_size
*
runtime_batch_
*
kDataTypeSize
[
static_cast
<
int
>
(
output
->
getType
())];
auto
it
=
buffer_sizes_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
buffer_sizes_
.
end
());
PADDLE_ENFORCE_GT
(
it
->
second
,
0
);
PADDLE_ENFORCE_LE
(
dst_size
,
it
->
second
);
PADDLE_ENFORCE_GE
(
max_size
,
dst_size
);
auto
&
buf
=
buffer
(
name
);
PADDLE_ENFORCE_NOT_NULL
(
buf
.
buffer
,
"buffer should be allocated before"
);
PADDLE_ENFORCE_EQ
(
0
,
cudaMemcpyAsync
(
dst
,
buf
.
buffer
,
dst_size
,
cudaMemcpyDeviceToHost
,
stream_
));
}
Buffer
&
TensorRTEngine
::
buffer
(
const
std
::
string
&
name
)
{
PADDLE_ENFORCE
(
infer_engine_
!=
nullptr
,
"call FreezeNetwork first."
);
auto
it
=
buffer_sizes_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
buffer_sizes_
.
end
(),
"tried to access buffer named %s"
,
name
);
auto
slot_offset
=
infer_engine_
->
getBindingIndex
(
name
.
c_str
());
return
buffers_
[
slot_offset
];
}
void
TensorRTEngine
::
SetInputFromCPU
(
const
std
::
string
&
name
,
const
void
*
data
,
size_t
size
)
{
auto
&
buf
=
buffer
(
name
);
PADDLE_ENFORCE_NOT_NULL
(
buf
.
buffer
);
PADDLE_ENFORCE_NOT_NULL
(
data
);
PADDLE_ENFORCE_LE
(
size
,
buf
.
max_size
,
"buffer is too small"
);
PADDLE_ENFORCE
(
buf
.
device
==
DeviceType
::
GPU
);
buf
.
size
=
size
;
PADDLE_ENFORCE_EQ
(
0
,
cudaMemcpyAsync
(
buf
.
buffer
,
data
,
size
,
cudaMemcpyHostToDevice
,
stream_
));
}
void
TensorRTEngine
::
SetInputFromGPU
(
const
std
::
string
&
name
,
const
void
*
data
,
size_t
size
)
{
auto
&
buf
=
buffer
(
name
);
buf
.
size
=
size
;
PADDLE_ENFORCE_NOT_NULL
(
buf
.
buffer
);
PADDLE_ENFORCE_LE
(
size
,
buf
.
max_size
,
"buffer is too small"
);
PADDLE_ENFORCE
(
buf
.
device
==
DeviceType
::
GPU
);
PADDLE_ENFORCE_EQ
(
0
,
cudaMemcpyAsync
(
buf
.
buffer
,
data
,
size
,
cudaMemcpyDeviceToDevice
,
stream_
));
}
void
TensorRTEngine
::
SetITensor
(
const
std
::
string
&
name
,
nvinfer1
::
ITensor
*
tensor
)
{
PADDLE_ENFORCE
(
tensor
!=
nullptr
);
...
...
@@ -254,13 +158,6 @@ void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
int
TensorRTEngine
::
GetRuntimeBatch
()
{
return
runtime_batch_
;
}
void
TensorRTEngine
::
freshDeviceId
()
{
int
count
;
cudaGetDeviceCount
(
&
count
);
PADDLE_ENFORCE_LT
(
device_
,
count
);
cudaSetDevice
(
device_
);
}
nvinfer1
::
IPluginLayer
*
TensorRTEngine
::
AddPlugin
(
nvinfer1
::
ITensor
*
const
*
inputs
,
int
num_inputs
,
plugin
::
PluginTensorRT
*
plugin
)
{
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
034ba1c2
...
...
@@ -57,13 +57,12 @@ class TensorRTEngine : public EngineBase {
};
TensorRTEngine
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
stream
,
int
device
=
0
,
bool
enable_int8
=
false
,
bool
enable_int8
=
false
,
TRTInt8Calibrator
*
calibrator
=
nullptr
,
nvinfer1
::
ILogger
&
logger
=
NaiveLogger
::
Global
())
:
max_batch_
(
max_batch
),
max_workspace_
(
max_workspace
),
stream_
(
stream
),
device_
(
device
),
enable_int8_
(
enable_int8
),
calibrator_
(
calibrator
),
logger_
(
logger
)
{}
...
...
@@ -74,6 +73,7 @@ class TensorRTEngine : public EngineBase {
void
Build
(
const
DescType
&
paddle_model
)
override
;
void
Execute
(
int
batch_size
)
override
;
void
Execute
(
int
batch_size
,
std
::
vector
<
void
*>&
buffers
);
// Initialize the inference network, so that TensorRT layers can add to this
// network.
...
...
@@ -98,28 +98,8 @@ class TensorRTEngine : public EngineBase {
// Check if the ITensor has been declared
bool
HasDeclared
(
const
std
::
string
&
name
);
// GPU memory address for an ITensor with specific name. One can operate on
// these memory directly for acceleration, for example, output the converted
// data directly to the buffer to save data copy overhead.
// NOTE this should be used after calling `FreezeNetwork`.
Buffer
&
buffer
(
const
std
::
string
&
name
)
override
;
cudaStream_t
stream
()
{
return
stream_
;
}
// Fill an input from CPU memory with name and size.
void
SetInputFromCPU
(
const
std
::
string
&
name
,
const
void
*
data
,
size_t
size
);
// TODO(Superjomn) is this method necessary given that buffer(xxx) can be
// accessed directly. Fill an input from GPU memory with name and size.
void
SetInputFromGPU
(
const
std
::
string
&
name
,
const
void
*
data
,
size_t
size
);
// Get an output called name, the output of tensorrt is in GPU, so this method
// Return the output's GPU memory address without copy.
void
*
GetOutputInGPU
(
const
std
::
string
&
name
);
// Copy data into dst inside the GPU device.
void
GetOutputInGPU
(
const
std
::
string
&
name
,
void
*
dst
,
size_t
max_size
);
// LOW EFFICENCY! Get output to CPU, this will trigger a memory copy from GPU
// to CPU.
void
GetOutputInCPU
(
const
std
::
string
&
name
,
void
*
dst
,
size_t
max_size
);
// Fill an ITensor into map itensor_map_.
void
SetITensor
(
const
std
::
string
&
name
,
nvinfer1
::
ITensor
*
tensor
);
// Get an ITensor called name.
nvinfer1
::
ITensor
*
GetITensor
(
const
std
::
string
&
name
);
...
...
@@ -128,7 +108,6 @@ class TensorRTEngine : public EngineBase {
nvinfer1
::
INetworkDefinition
*
network
()
{
return
infer_network_
.
get
();
}
void
SetRuntimeBatch
(
size_t
batch_size
);
int
GetRuntimeBatch
();
int
GetDevice
()
{
return
device_
;
}
nvinfer1
::
IPluginLayer
*
AddPlugin
(
nvinfer1
::
ITensor
*
const
*
inputs
,
int
num_inputs
,
plugin
::
PluginTensorRT
*
);
...
...
@@ -140,16 +119,6 @@ class TensorRTEngine : public EngineBase {
std
::
unordered_map
<
std
::
string
/*name*/
,
std
::
unique_ptr
<
framework
::
Tensor
>>
weight_map
;
// TODO(NHZLX)
// In the normal case, the paddle-trt exists bug when runing the googlenet.
// When there are more than two convolutions of 1 * 1 with the same input, the
// paddle-tensorrt will do the merging optimization, which fuse those conv
// into one conv, and then trigger bug. So, We should use strategy to avoid
// this
// optimization for the time being. This bug will be fixed in the future.
std
::
unordered_map
<
std
::
string
/*name*/
,
int
/*ITensor_quote_num*/
>
itensor_quote_num
;
private:
// the max batch size
int
max_batch_
;
...
...
@@ -159,8 +128,6 @@ class TensorRTEngine : public EngineBase {
int
max_workspace_
;
cudaStream_t
stream_
;
// The specific GPU id that the TensorRTEngine bounded to.
int
device_
;
bool
enable_int8_
;
TRTInt8Calibrator
*
calibrator_
;
...
...
@@ -192,10 +159,6 @@ class TensorRTEngine : public EngineBase {
infer_ptr
<
nvinfer1
::
INetworkDefinition
>
infer_network_
;
infer_ptr
<
nvinfer1
::
ICudaEngine
>
infer_engine_
;
infer_ptr
<
nvinfer1
::
IExecutionContext
>
infer_context_
;
// Each ICudaEngine object is bound to a specific GPU when it is instantiated,
// ensure that the thread is associated with the correct device by calling
// freshDeviceId().
void
freshDeviceId
();
};
// class TensorRTEngine
// Add an layer__ into engine__ with args ARGS.
...
...
paddle/fluid/inference/tensorrt/test_engine.cc
浏览文件 @
034ba1c2
...
...
@@ -17,6 +17,8 @@ limitations under the License. */
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -27,19 +29,29 @@ namespace tensorrt {
class
TensorRTEngineTest
:
public
::
testing
::
Test
{
protected:
void
SetUp
()
override
{
ASSERT_EQ
(
0
,
cudaStreamCreate
(
&
stream_
));
engine_
=
new
TensorRTEngine
(
10
,
1
<<
10
,
stream_
);
ctx_
=
new
platform
::
CUDADeviceContext
(
platform
::
CUDAPlace
(
0
));
engine_
=
new
TensorRTEngine
(
10
,
1
<<
10
,
ctx_
->
stream
());
engine_
->
InitNetwork
();
}
void
TearDown
()
override
{
delete
engine_
;
cudaStreamDestroy
(
stream_
);
void
TearDown
()
override
{
delete
engine_
;
}
void
PrepareInputOutput
(
const
std
::
vector
<
float
>
&
input
,
std
::
vector
<
int
>
output_shape
)
{
TensorFromVector
(
input
,
*
ctx_
,
&
input_
);
output_
.
Resize
(
framework
::
make_ddim
(
output_shape
));
}
void
GetOutput
(
std
::
vector
<
float
>
*
output
)
{
TensorToVector
(
output_
,
*
ctx_
,
output
);
}
protected:
TensorRTEngine
*
engine_
;
cudaStream_t
stream_
;
framework
::
Tensor
input_
;
framework
::
Tensor
output_
;
TensorRTEngine
*
engine_
;
platform
::
CUDADeviceContext
*
ctx_
;
};
TEST_F
(
TensorRTEngineTest
,
add_layer
)
{
...
...
@@ -48,12 +60,14 @@ TEST_F(TensorRTEngineTest, add_layer) {
float
raw_weight
[
size
]
=
{
2.
};
// Weight in CPU memory.
float
raw_bias
[
size
]
=
{
3.
};
std
::
vector
<
void
*>
buffers
(
2
);
// TRT binded inputs
LOG
(
INFO
)
<<
"create weights"
;
TensorRTEngine
::
Weight
weight
(
nvinfer1
::
DataType
::
kFLOAT
,
raw_weight
,
size
);
TensorRTEngine
::
Weight
bias
(
nvinfer1
::
DataType
::
kFLOAT
,
raw_bias
,
size
);
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
kFLOAT
,
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
kFLOAT
,
nvinfer1
::
DimsCHW
{
1
,
1
,
1
});
auto
*
fc_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
FullyConnected
,
*
x
,
size
,
auto
*
fc_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
FullyConnected
,
*
x
,
size
,
weight
.
get
(),
bias
.
get
());
PADDLE_ENFORCE
(
fc_layer
!=
nullptr
);
...
...
@@ -63,18 +77,24 @@ TEST_F(TensorRTEngineTest, add_layer) {
ASSERT_EQ
(
engine_
->
engine
()
->
getNbBindings
(),
2
);
// fill in real data
float
x_v
=
1234
;
engine_
->
SetInputFromCPU
(
"x"
,
reinterpret_cast
<
void
*>
(
&
x_v
),
1
*
sizeof
(
float
));
std
::
vector
<
float
>
x_v
=
{
1234
};
std
::
vector
<
float
>
y_cpu
;
PrepareInputOutput
(
x_v
,
{
1
});
auto
*
x_v_gpu_data
=
input_
.
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
auto
*
y_gpu_data
=
output_
.
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
buffers
[
0
]
=
reinterpret_cast
<
void
*>
(
x_v_gpu_data
);
buffers
[
1
]
=
reinterpret_cast
<
void
*>
(
y_gpu_data
);
LOG
(
INFO
)
<<
"to execute"
;
engine_
->
Execute
(
1
);
engine_
->
Execute
(
1
,
buffers
);
LOG
(
INFO
)
<<
"to get output"
;
float
y_cpu
;
engine_
->
GetOutputInCPU
(
"y"
,
&
y_cpu
,
1
*
sizeof
(
float
));
GetOutput
(
&
y_cpu
);
LOG
(
INFO
)
<<
"to checkout output"
;
ASSERT_EQ
(
y_cpu
,
x_v
*
2
+
3
);
ASSERT_EQ
(
y_cpu
[
0
],
x_v
[
0
]
*
2
+
3
);
}
TEST_F
(
TensorRTEngineTest
,
add_layer_multi_dim
)
{
...
...
@@ -83,12 +103,13 @@ TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
// instead of row-major, which is [[1.0, 1.1], [3.3, 4.4]]
float
raw_weight
[
4
]
=
{
1.0
,
1.1
,
3.3
,
4.4
};
float
raw_bias
[
2
]
=
{
1.3
,
2.4
};
std
::
vector
<
void
*>
buffers
(
2
);
// TRT binded inputs
TensorRTEngine
::
Weight
weight
(
nvinfer1
::
DataType
::
kFLOAT
,
raw_weight
,
4
);
TensorRTEngine
::
Weight
bias
(
nvinfer1
::
DataType
::
kFLOAT
,
raw_bias
,
2
);
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
kFLOAT
,
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
kFLOAT
,
nvinfer1
::
DimsCHW
{
1
,
2
,
1
});
auto
*
fc_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
FullyConnected
,
*
x
,
2
,
auto
*
fc_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
FullyConnected
,
*
x
,
2
,
weight
.
get
(),
bias
.
get
());
PADDLE_ENFORCE
(
fc_layer
!=
nullptr
);
...
...
@@ -96,19 +117,27 @@ TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
engine_
->
FreezeNetwork
();
ASSERT_EQ
(
engine_
->
engine
()
->
getNbBindings
(),
2
);
float
x_v
[
2
]
=
{
1.0
,
2.0
};
engine_
->
SetInputFromCPU
(
"x"
,
reinterpret_cast
<
void
*>
(
&
x_v
),
2
*
sizeof
(
float
));
engine_
->
Execute
(
1
);
// fill in real data
std
::
vector
<
float
>
x_v
=
{
1.0
,
2.0
};
std
::
vector
<
float
>
y_cpu
;
PrepareInputOutput
(
x_v
,
{
2
});
auto
*
x_v_gpu_data
=
input_
.
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
auto
*
y_gpu_data
=
output_
.
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
buffers
[
0
]
=
reinterpret_cast
<
void
*>
(
x_v_gpu_data
);
buffers
[
1
]
=
reinterpret_cast
<
void
*>
(
y_gpu_data
);
engine_
->
Execute
(
1
,
buffers
);
LOG
(
INFO
)
<<
"to get output"
;
float
y_cpu
[
2
]
=
{
-
1.
,
-
1.
}
;
GetOutput
(
&
y_cpu
)
;
auto
dims
=
engine_
->
GetITensor
(
"y"
)
->
getDimensions
();
ASSERT_EQ
(
dims
.
nbDims
,
3
);
ASSERT_EQ
(
dims
.
d
[
0
],
2
);
ASSERT_EQ
(
dims
.
d
[
1
],
1
);
engine_
->
GetOutputInCPU
(
"y"
,
&
y_cpu
[
0
],
2
*
sizeof
(
float
));
ASSERT_EQ
(
y_cpu
[
0
],
4.5
);
ASSERT_EQ
(
y_cpu
[
1
],
14.5
);
}
...
...
@@ -117,12 +146,13 @@ TEST_F(TensorRTEngineTest, test_conv2d) {
// Weight in CPU memory.
float
raw_weight
[
9
]
=
{
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
};
float
raw_bias
[
1
]
=
{
0
};
std
::
vector
<
void
*>
buffers
(
2
);
// TRT binded inputs
TensorRTEngine
::
Weight
weight
(
nvinfer1
::
DataType
::
kFLOAT
,
raw_weight
,
9
);
TensorRTEngine
::
Weight
bias
(
nvinfer1
::
DataType
::
kFLOAT
,
raw_bias
,
1
);
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
kFLOAT
,
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
kFLOAT
,
nvinfer1
::
Dims3
{
1
,
3
,
3
});
auto
*
conv_layer
=
auto
*
conv_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Convolution
,
*
x
,
1
,
nvinfer1
::
DimsHW
{
3
,
3
},
weight
.
get
(),
bias
.
get
());
PADDLE_ENFORCE
(
conv_layer
!=
nullptr
);
...
...
@@ -133,28 +163,37 @@ TEST_F(TensorRTEngineTest, test_conv2d) {
engine_
->
FreezeNetwork
();
ASSERT_EQ
(
engine_
->
engine
()
->
getNbBindings
(),
2
);
float
x_v
[
18
]
=
{
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
};
engine_
->
SetInputFromCPU
(
"x"
,
reinterpret_cast
<
void
*>
(
&
x_v
),
18
*
sizeof
(
float
));
engine_
->
Execute
(
2
);
// fill in real data
std
::
vector
<
float
>
x_v
=
{
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
,
1.0
};
std
::
vector
<
float
>
y_cpu
;
PrepareInputOutput
(
x_v
,
{
18
});
auto
*
x_v_gpu_data
=
input_
.
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
auto
*
y_gpu_data
=
output_
.
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
buffers
[
0
]
=
reinterpret_cast
<
void
*>
(
x_v_gpu_data
);
buffers
[
1
]
=
reinterpret_cast
<
void
*>
(
y_gpu_data
);
engine_
->
Execute
(
2
,
buffers
);
LOG
(
INFO
)
<<
"to get output"
;
float
*
y_cpu
=
new
float
[
18
]
;
engine_
->
GetOutputInCPU
(
"y"
,
&
y_cpu
[
0
],
18
*
sizeof
(
float
));
GetOutput
(
&
y_cpu
)
;
ASSERT_EQ
(
y_cpu
[
0
],
4.0
);
ASSERT_EQ
(
y_cpu
[
1
],
6.0
);
}
TEST_F
(
TensorRTEngineTest
,
test_pool2d
)
{
// Weight in CPU memory.
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
kFLOAT
,
auto
*
x
=
engine_
->
DeclareInput
(
"x"
,
nvinfer1
::
DataType
::
kFLOAT
,
nvinfer1
::
Dims3
{
1
,
2
,
2
});
std
::
vector
<
void
*>
buffers
(
2
);
// TRT binded inputs
nvinfer1
::
PoolingType
pool_t
=
nvinfer1
::
PoolingType
::
kAVERAGE
;
auto
*
pool_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Pooling
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
x
),
pool_t
,
nvinfer1
::
DimsHW
{
2
,
2
});
auto
*
pool_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Pooling
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
x
),
pool_t
,
nvinfer1
::
DimsHW
{
2
,
2
});
PADDLE_ENFORCE
(
pool_layer
!=
nullptr
);
pool_layer
->
setStride
(
nvinfer1
::
DimsHW
{
1
,
1
});
...
...
@@ -164,14 +203,21 @@ TEST_F(TensorRTEngineTest, test_pool2d) {
engine_
->
FreezeNetwork
();
ASSERT_EQ
(
engine_
->
engine
()
->
getNbBindings
(),
2
);
float
x_v
[
8
]
=
{
1.0
,
2.0
,
5.0
,
0.0
,
2.0
,
3.0
,
5.0
,
10.0
};
engine_
->
SetInputFromCPU
(
"x"
,
reinterpret_cast
<
void
*>
(
&
x_v
),
8
*
sizeof
(
float
));
engine_
->
Execute
(
2
);
// fill in real data
std
::
vector
<
float
>
x_v
=
{
1.0
,
2.0
,
5.0
,
0.0
,
2.0
,
3.0
,
5.0
,
10.0
};
std
::
vector
<
float
>
y_cpu
;
PrepareInputOutput
(
x_v
,
{
2
});
auto
*
x_v_gpu_data
=
input_
.
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
auto
*
y_gpu_data
=
output_
.
mutable_data
<
float
>
(
ctx_
->
GetPlace
());
buffers
[
0
]
=
reinterpret_cast
<
void
*>
(
x_v_gpu_data
);
buffers
[
1
]
=
reinterpret_cast
<
void
*>
(
y_gpu_data
);
engine_
->
Execute
(
2
,
buffers
);
LOG
(
INFO
)
<<
"to get output"
;
float
*
y_cpu
=
new
float
[
2
];
engine_
->
GetOutputInCPU
(
"y"
,
&
y_cpu
[
0
],
2
*
sizeof
(
float
));
GetOutput
(
&
y_cpu
);
ASSERT_EQ
(
y_cpu
[
0
],
2.0
);
ASSERT_EQ
(
y_cpu
[
1
],
5.0
);
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
034ba1c2
...
...
@@ -106,6 +106,11 @@ class TensorRTEngineOp : public framework::OperatorBase {
if
(
enable_int8_
&&
calibration_data_
.
size
())
{
calibrator_
.
reset
(
new
TRTInt8Calibrator
(
calibration_data_
));
}
// we will create an engine here.
if
(
!
calibration_mode_
)
{
// trt_engine_.reset();
}
}
protected:
...
...
@@ -125,7 +130,8 @@ class TensorRTEngineOp : public framework::OperatorBase {
RunCalibration
(
scope
,
dev_place
);
return
;
}
RunTrt
(
scope
,
dev_place
);
auto
trt_engine
=
GetEngine
(
scope
,
dev_place
);
RunTrt
(
scope
,
dev_place
,
trt_engine
);
}
void
RunCalibration
(
const
framework
::
Scope
&
scope
,
...
...
@@ -155,10 +161,9 @@ class TensorRTEngineOp : public framework::OperatorBase {
calib_res
->
calib_
.
reset
(
new
TRTInt8Calibrator
(
calib_buffers
,
runtime_batch
,
engine_key_
,
dev_place
));
calib_res
->
thr_
.
reset
(
new
std
::
thread
([
&
]()
{
calib_res
->
engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
stream
,
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_place
).
device
,
enable_int8_
,
calib_res
->
calib_
.
get
()));
calib_res
->
engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
stream
,
enable_int8_
,
calib_res
->
calib_
.
get
()));
VLOG
(
3
)
<<
"start the calib trt engine thread"
;
Prepare
(
scope
,
dev_place
,
calib_res
->
engine_
.
get
());
}));
...
...
@@ -180,28 +185,30 @@ class TensorRTEngineOp : public framework::OperatorBase {
RunNativeImpl
(
scope
,
dev_place
);
}
void
RunTrt
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_plac
e
)
const
{
void
RunTrt
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
,
TensorRTEngine
*
engin
e
)
const
{
int
runtime_batch
=
1
;
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
dev_ctx
).
stream
();
if
(
trt_engine_
.
get
()
==
nullptr
)
{
trt_engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
stream
,
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_place
).
device
,
enable_int8_
,
calibrator_
.
get
()));
Prepare
(
scope
,
dev_place
,
trt_engine_
.
get
());
}
auto
*
engine
=
trt_engine_
.
get
();
//
auto *engine = trt_engine_.get();
PADDLE_ENFORCE
(
!
input_names_
.
empty
(),
"should pass more than one inputs"
);
std
::
vector
<
std
::
string
>
output_maps
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"output_name_mapping"
);
// Convert input tensor from fluid to engine.
int
num_inputs
=
0
;
for
(
const
auto
&
x
:
Inputs
(
"Xs"
))
{
if
(
param_names_
.
count
(
x
))
continue
;
num_inputs
+=
1
;
}
const
int
num_bindings
=
num_inputs
+
Outputs
(
"Ys"
).
size
();
std
::
vector
<
void
*>
buffers
(
num_bindings
);
// Bind input tensor to TRT.
for
(
const
auto
&
x
:
Inputs
(
"Xs"
))
{
if
(
param_names_
.
count
(
x
))
continue
;
// convert input and copy to TRT engine's buffer
...
...
@@ -209,26 +216,17 @@ class TensorRTEngineOp : public framework::OperatorBase {
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
scope
,
x
);
auto
t_shape
=
framework
::
vectorize
(
t
.
dims
());
runtime_batch
=
t_shape
[
0
];
if
(
platform
::
is_cpu_place
(
t
.
place
()))
{
engine
->
SetInputFromCPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
}
else
{
engine
->
SetInputFromGPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
}
}
cudaStreamSynchronize
(
stream
);
PADDLE_ENFORCE_LE
(
runtime_batch
,
max_batch_size_
);
// Execute the engine.
engine
->
Execute
(
runtime_batch
);
const
int
bind_index
=
engine
->
engine
()
->
getBindingIndex
(
x
.
c_str
());
PADDLE_ENFORCE
(
bind_index
<
num_bindings
,
"The bind index should be less than num_bindings"
);
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
t
.
data
<
float
>
());
}
//
Convert output tensor from engine to fluid
//
Bind output tensor to TRT.
int
output_index
=
0
;
VLOG
(
4
)
<<
"TensorRT Engine Op Outputs:"
;
for
(
const
auto
&
y
:
Outputs
(
"Ys"
))
{
VLOG
(
4
)
<<
y
;
// convert output and copy to fluid.
nvinfer1
::
ITensor
*
trt_t
=
engine
->
GetITensor
(
output_maps
[
output_index
]);
auto
dims
=
trt_t
->
getDimensions
();
// Use the output ITensor's dims to reshape the Fluid Tensor.
...
...
@@ -238,27 +236,46 @@ class TensorRTEngineOp : public framework::OperatorBase {
for
(
int
i
=
0
;
i
<
dims
.
nbDims
;
i
++
)
{
ddim
.
push_back
(
dims
.
d
[
i
]);
}
auto
*
fluid_v
=
scope
.
FindVar
(
y
);
PADDLE_ENFORCE_NOT_NULL
(
fluid_v
,
"no output variable called %s"
,
y
);
auto
*
fluid_t
=
fluid_v
->
GetMutable
<
framework
::
LoDTensor
>
();
fluid_t
->
Resize
(
framework
::
make_ddim
(
ddim
));
// TODO(Superjomn) change this float to dtype size.
auto
size
=
inference
::
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
)
*
runtime_batch
;
engine
->
GetOutputInGPU
(
output_maps
[
output_index
],
fluid_t
->
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_place
).
device
)),
size
*
sizeof
(
float
));
const
int
bind_index
=
engine
->
engine
()
->
getBindingIndex
(
output_maps
[
output_index
].
c_str
());
PADDLE_ENFORCE
(
bind_index
<
num_bindings
,
"The bind index should be less than num_bindings"
);
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
fluid_t
->
mutable_data
<
float
>
(
boost
::
get
<
platform
::
CUDAPlace
>
(
dev_place
)));
output_index
+=
1
;
}
PADDLE_ENFORCE_LE
(
runtime_batch
,
max_batch_size_
);
// Execute the engine.
engine
->
Execute
(
runtime_batch
,
buffers
);
cudaStreamSynchronize
(
stream
);
}
TensorRTEngine
*
GetEngine
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
{
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
auto
stream
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
dev_ctx
).
stream
();
if
(
trt_engine_
.
get
()
==
nullptr
)
{
trt_engine_
.
reset
(
new
TensorRTEngine
(
max_batch_size_
,
workspace_size_
,
stream
,
enable_int8_
,
calibrator_
.
get
()));
if
(
true
)
{
Prepare
(
scope
,
dev_place
,
trt_engine_
.
get
());
}
else
{
// create static engine
}
}
return
trt_engine_
.
get
();
}
void
Prepare
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
,
TensorRTEngine
*
engine
)
const
{
LOG
(
INFO
)
<<
"Prepare TRT engine (Optimize model structure, Select OP "
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录