test_engine.cc 8.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>

N
nhzlx 已提交
18
#include "paddle/fluid/framework/tensor.h"
19
#include "paddle/fluid/inference/tensorrt/engine.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

class TensorRTEngineTest : public ::testing::Test {
 protected:
  void SetUp() override {
N
nhzlx 已提交
29
    ctx_ = new platform::CUDADeviceContext(platform::CUDAPlace(0));
W
Wilber 已提交
30 31 32 33 34 35 36 37 38 39 40 41
    ctx_->SetAllocator(paddle::memory::allocation::AllocatorFacade::Instance()
                           .GetAllocator(platform::CUDAPlace(0), ctx_->stream())
                           .get());
    ctx_->SetHostAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetAllocator(paddle::platform::CPUPlace())
            .get());
    ctx_->SetZeroAllocator(
        paddle::memory::allocation::AllocatorFacade::Instance()
            .GetZeroAllocator(platform::CUDAPlace(0))
            .get());
    ctx_->PartialInitWithAllocator();
N
nhzlx 已提交
42

43
    engine_ = new TensorRTEngine(10, 1 << 10);
Y
Yan Chunwei 已提交
44 45 46
    engine_->InitNetwork();
  }

N
nhzlx 已提交
47 48 49 50 51 52
  void TearDown() override {
    if (engine_) {
      delete engine_;
      engine_ = nullptr;
    }
  }
N
nhzlx 已提交
53 54 55

  void PrepareInputOutput(const std::vector<float> &input,
                          std::vector<int> output_shape) {
56
    paddle::framework::TensorFromVector(input, *ctx_, &input_);
57
    output_.Resize(phi::make_ddim(output_shape));
N
nhzlx 已提交
58 59 60
  }

  void GetOutput(std::vector<float> *output) {
61
    paddle::framework::TensorToVector(output_, *ctx_, output);
Y
Yan Chunwei 已提交
62 63 64
  }

 protected:
N
nhzlx 已提交
65 66 67 68
  framework::Tensor input_;
  framework::Tensor output_;
  TensorRTEngine *engine_;
  platform::CUDADeviceContext *ctx_;
Y
Yan Chunwei 已提交
69 70 71 72 73 74 75 76
};

TEST_F(TensorRTEngineTest, add_layer) {
  const int size = 1;

  float raw_weight[size] = {2.};  // Weight in CPU memory.
  float raw_bias[size] = {3.};

N
nhzlx 已提交
77 78
  std::vector<void *> buffers(2);  // TRT binded inputs

Y
Yan Chunwei 已提交
79 80 81
  LOG(INFO) << "create weights";
  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, size);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, size);
N
nhzlx 已提交
82
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
83
                                  nvinfer1::Dims3{1, 1, 1});
N
nhzlx 已提交
84
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, size,
Y
Yan Chunwei 已提交
85
                                        weight.get(), bias.get());
86 87 88
  PADDLE_ENFORCE_NOT_NULL(fc_layer,
                          platform::errors::InvalidArgument(
                              "TRT fully connected layer building failed."));
Y
Yan Chunwei 已提交
89 90 91 92 93 94 95

  engine_->DeclareOutput(fc_layer, 0, "y");
  LOG(INFO) << "freeze network";
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

  // fill in real data
N
nhzlx 已提交
96 97 98 99 100 101 102 103 104 105
  std::vector<float> x_v = {1234};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {1});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

106 107 108 109 110 111 112 113 114
  LOG(INFO) << "Set attr";
  engine_->Set("test_attr", new std::string("test_attr"));
  if (engine_->Has("test_attr")) {
    auto attr_val = engine_->Get<std::string>("test_attr");
    engine_->Erase("test_attr");
  }
  std::string *attr_key = new std::string("attr_key");
  engine_->SetNotOwned("attr1", attr_key);

Y
Yan Chunwei 已提交
115
  LOG(INFO) << "to execute";
116
  engine_->Execute(1, &buffers, ctx_->stream());
Y
Yan Chunwei 已提交
117 118

  LOG(INFO) << "to get output";
N
nhzlx 已提交
119
  GetOutput(&y_cpu);
Y
Yan Chunwei 已提交
120 121

  LOG(INFO) << "to checkout output";
N
nhzlx 已提交
122
  ASSERT_EQ(y_cpu[0], x_v[0] * 2 + 3);
123 124

  delete attr_key;
Y
Yan Chunwei 已提交
125 126
}

X
Xin Pan 已提交
127 128 129 130 131 132
TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
  // Weight in CPU memory.
  // It seems tensorrt FC use col-major: [[1.0, 3.3], [1.1, 4.4]]
  // instead of row-major, which is [[1.0, 1.1], [3.3, 4.4]]
  float raw_weight[4] = {1.0, 1.1, 3.3, 4.4};
  float raw_bias[2] = {1.3, 2.4};
N
nhzlx 已提交
133
  std::vector<void *> buffers(2);  // TRT binded inputs
X
Xin Pan 已提交
134 135 136

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 4);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 2);
N
nhzlx 已提交
137
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
138
                                  nvinfer1::Dims3{1, 2, 1});
N
nhzlx 已提交
139
  auto *fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, 2,
X
Xin Pan 已提交
140
                                        weight.get(), bias.get());
141 142 143
  PADDLE_ENFORCE_NOT_NULL(fc_layer,
                          platform::errors::InvalidArgument(
                              "TRT fully connected layer building failed."));
X
Xin Pan 已提交
144 145 146 147 148

  engine_->DeclareOutput(fc_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
149 150 151 152 153 154 155 156 157 158 159
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

160
  engine_->Execute(1, &buffers, ctx_->stream());
X
Xin Pan 已提交
161 162

  LOG(INFO) << "to get output";
N
nhzlx 已提交
163
  GetOutput(&y_cpu);
N
nhzlx 已提交
164

165 166 167 168
  auto dims = engine_->GetITensor("y")->getDimensions();
  ASSERT_EQ(dims.nbDims, 3);
  ASSERT_EQ(dims.d[0], 2);
  ASSERT_EQ(dims.d[1], 1);
N
nhzlx 已提交
169

X
Xin Pan 已提交
170 171 172 173
  ASSERT_EQ(y_cpu[0], 4.5);
  ASSERT_EQ(y_cpu[1], 14.5);
}

174
TEST_F(TensorRTEngineTest, test_conv2d) {
175 176 177
  // Weight in CPU memory.
  float raw_weight[9] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  float raw_bias[1] = {0};
N
nhzlx 已提交
178
  std::vector<void *> buffers(2);  // TRT binded inputs
179 180 181

  TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 9);
  TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 1);
N
nhzlx 已提交
182
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
183
                                  nvinfer1::Dims3{1, 3, 3});
N
nhzlx 已提交
184
  auto *conv_layer =
185 186
      TRT_ENGINE_ADD_LAYER(engine_, Convolution, *x, 1, nvinfer1::DimsHW{3, 3},
                           weight.get(), bias.get());
187 188 189
  PADDLE_ENFORCE_NOT_NULL(conv_layer,
                          platform::errors::InvalidArgument(
                              "TRT convolution layer building failed."));
190 191 192 193 194 195 196
  conv_layer->setStride(nvinfer1::DimsHW{1, 1});
  conv_layer->setPadding(nvinfer1::DimsHW{1, 1});

  engine_->DeclareOutput(conv_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
197 198 199 200 201 202 203 204 205 206 207 208
  // fill in real data
  std::vector<float> x_v = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
                            1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {18});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

209
  engine_->Execute(2, &buffers, ctx_->stream());
210 211

  LOG(INFO) << "to get output";
N
nhzlx 已提交
212 213
  GetOutput(&y_cpu);

214 215 216 217
  ASSERT_EQ(y_cpu[0], 4.0);
  ASSERT_EQ(y_cpu[1], 6.0);
}

218 219
TEST_F(TensorRTEngineTest, test_pool2d) {
  // Weight in CPU memory.
N
nhzlx 已提交
220
  auto *x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
221 222
                                  nvinfer1::Dims3{1, 2, 2});

N
nhzlx 已提交
223
  std::vector<void *> buffers(2);  // TRT binded inputs
224
  nvinfer1::PoolingType pool_t = nvinfer1::PoolingType::kAVERAGE;
N
nhzlx 已提交
225 226
  auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *x, pool_t,
                                          nvinfer1::DimsHW{2, 2});
227

228 229 230
  PADDLE_ENFORCE_NOT_NULL(
      pool_layer,
      platform::errors::InvalidArgument("TRT pooling layer building failed."));
231 232 233 234 235 236 237
  pool_layer->setStride(nvinfer1::DimsHW{1, 1});
  pool_layer->setPadding(nvinfer1::DimsHW{0, 0});

  engine_->DeclareOutput(pool_layer, 0, "y");
  engine_->FreezeNetwork();
  ASSERT_EQ(engine_->engine()->getNbBindings(), 2);

N
nhzlx 已提交
238 239 240 241 242 243 244 245 246 247 248
  // fill in real data
  std::vector<float> x_v = {1.0, 2.0, 5.0, 0.0, 2.0, 3.0, 5.0, 10.0};
  std::vector<float> y_cpu;
  PrepareInputOutput(x_v, {2});

  auto *x_v_gpu_data = input_.mutable_data<float>(ctx_->GetPlace());
  auto *y_gpu_data = output_.mutable_data<float>(ctx_->GetPlace());

  buffers[0] = reinterpret_cast<void *>(x_v_gpu_data);
  buffers[1] = reinterpret_cast<void *>(y_gpu_data);

249
  engine_->Execute(2, &buffers, ctx_->stream());
250 251

  LOG(INFO) << "to get output";
N
nhzlx 已提交
252
  GetOutput(&y_cpu);
253 254 255 256 257

  ASSERT_EQ(y_cpu[0], 2.0);
  ASSERT_EQ(y_cpu[1], 5.0);
}

Y
Yan Chunwei 已提交
258 259 260
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle